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What are hydrogen carriers? 

• Program’s definition: 

– Hydrogen carriers are hydrogen-rich liquid or solid phase materials from which 
hydrogen can be liberated on-demand. Ideal hydrogen carriers have relatively high 
hydrogen densities at low pressure and near ambient temperature. 

• Consensus from November workshop on hydrogen carriers: 

– Keep a broad definition of hydrogen carriers and let the requirements for specific 
applications narrow the scope of hydrogen carriers for consideration for those 
applications. 
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Examples of program activities on hydrogen carriers to date 

• Prior to 2010 – supported Air Products and Chemicals to investigate heterocyclic 
materials as potential hydrogen storage materials, focused efforts on n-ethylcarbazole 

• 2018 – Initiated techno-economic analysis at Argonne National Lab to establish a 
baseline comparison between conventional compressed and liquid hydrogen delivery 
with several commonly cited hydrogen carriers 

• 2018 – Initiated preliminary efforts within HyMARC to investigate hydrogen carrier 
materials, with an emphasis on “additional” potential benefits (e.g., chemical 
compression) 

• 2019 – included a topic in the FCTO FOA on hydrogen carriers, selected 4 projects to 
investigate and develop novel hydrogen carrier concepts 

• Nov. 2019 – Held a hydrogen carrier workshop in Golden, CO - 74 participants 
representing industry, universities, and national labs, and from N. America, Europe 
and Asia 
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For Techno-Economic Analysis (TEA) – where system boundary is set and 
the pathway followed matters 
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Baseline TEA of hydrogen carriers with compressed hydrogen 

• All cases: 

– 50,000 kg H2/day delivery to city gate terminal 

– Includes 10 days of storage at city gate terminal 

• Hydrogen Carriers 

– Carriers transported from point of production to storage terminal 

– Carriers transported 150 km from storage terminal to city gate terminal 

– H2 release at city gate terminal, 

– Local distribution as compressed gaseous hydrogen to refueling stations 

– Two-way carriers include transportation costs back to production site 

• Gaseous Hydrogen case 

– H2 production using SMR 

– Transmission as in trailer trucks for 150 km to city gate terminal 

– Local distribution to hydrogen refueling stations 
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Gaseous hydrogen baseline 

$4.95/kg H2 delivery to fueling station for gaseous hydrogen 

50 tonne H2 per day by SMR, 150 km from production site to terminal, trailer truck transport, transmission and distribution costs combined 
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Hydrogen carriers included in baseline study 

• One-way carriers 

– Ammonia (separate H2 production step) 

– Methanol (direct with no separate H2 production step) 

• Two-way carrier 

– Methylcyclohexane/toluene MP BP
o
C

o
C wt% g/L P, bar T, 

o
C P, bar T, 

o
C DH

kJ/mol-H2

Ammonia

-78 -33.4 17.6 121 150 375 20 800 30.6

Methanol

-98 64.7 18.75 149 51 250 3 290 16.6

MCH

-127 101 6.1 47 10 240 2 350 68.3

Cu/ZnO/Al2O3 Catalyst

Non-PGM Catalyst Pt/Al2O3 Catalyst

High-Temperature Cracking

Ni Catalyst

Steam Reforming

Production DecompositionH2 Capacity

Haber-Bosch Process

Fe Based Catalyst
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Factors to consider for hydrogen carriers 

1. Capacity of carrier production/dehydrogenation plants: 

a. Production - assumed plants not built and sized just based on targeted H2 delivery per day; 

b. Dehydrogenation - plants are sized for targeted hydrogen capacity 

2. Production - cost and energy to produce hydrogenated carrier 

3. Transmission – cost to delivery carrier from point of production to storage terminal (rail, 
ship, pipeline, etc.) and then to city gate (150 km by truck) 

a. For two-way carriers - includes cost to return dehydrogenated product to hydrogenation site 

4. Dehydrogenation - cost and energy to dehydrogenate and release the hydrogen from 
the carrier at the city gate terminal 

a. Includes purification costs to clean-up the hydrogen 

b. For two-way carriers – includes replacement costs of lost carrier (e.g., evaporation, side 
reactions, etc.) 

Production Transmission Dehydrogenation Distribution 
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Plant capacity matters 

Example – methanol – production method can change as plant 
capacity varies to reduce capital costs 
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Levelized cost for production 

• Levelized production cost for 
methanol the lowest when produced 
in high capacity plants (10k ton/day) 

• Methylcyclohexane production 
through hydrogenation of toluene 
competitive with methanol levelized 
production cost 

• Ammonia production highest on a 
levelized production cost, plants 
more capital intensive than methanol 
plants 

Production Transmission Dehydrogenation Distribution 
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Transmission from point of production to city gate 

Production Transmission Dehydrogenation Distribution 
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Transmission cost comparison through various means 

• H2 capacity of the carrier is an important factor in determining the transmission cost by rail 
- Toluene has nearly the same train transmission cost as methanol on tpd basis, but is >3X costlier on kg-H2 

basis 

• Toxicity and handling are also important factors in determining rail transmission costs 
- Ammonia has nearly the same H2 capacity as methanol but is >2X costlier to move by train 

• Long H2 or carrier pipelines (>1000 mile) do not offer significant cost savings 
- Pipelines may not be economically viable for two-way carriers 

Comparison costs: by rail by pipeline by ship for MCH/toluene 

Railroad Waybill 2016 Data 
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Levelized transmission cost comparison 

Methanol transmission lowest, methylcyclohexane more costly due to return leg 

• Unit train (once every 10 days) to 
storage terminal in California 
(3250 km); 

• Local transmission by truck (150 
km) to city gate terminal 

• Similar case for both methanol 
and ammonia, methylcyclohexane 
includes return leg for toluene 

Production Transmission Dehydrogenation Distribution 
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Capital cost of methylcyclohexane dehydrogenation plant 

Production Transmission Dehydrogenation Distribution 
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▪ Toluene+MCH: 0.84% 

▪ Hydrogen: 10% 

▪ Heat: 0.36 kWhth/kWhth -H2 

Feedstock/Utilities 

▪ NG: 0.22 kWhth/KWhth -H2 

▪ Electricity: 0.04 kWhe/KWth -H2 

Capital Cost Factors: 50 tpd-H2 

Dependence of capital costs on capacity 
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Levelized decomposition cost comparison 

Levelized decomposition costs (LDC) are 

comparable for the three carriers: 0.61-0.78 

$/kg-H2 at 50 tpd-H2 

▪ At high throughput, LDC decreases most for 

ammonia. However, ammonia decomposes at 

a high temperature (800oC) using a catalyst 

(Ni) that may require further development and 

field testing 

▪ Methanol decomposition method well 

established but requires steam reforming and 

water gas shift catalysts. Cost may decrease if 

methanol reformed at >3 atm. 

▪ MCH decomposes at 2 bar using a PGM 

catalyst (Pt/Al2O3) and requires a large 

compressor 

Production Transmission Dehydrogenation Distribution 
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Distribution costs 

TRANSPORTATION 

City-Gate Terminal to Refueling Comparing distribution as 350 & 500 bar 
Station “Last-Mile” Distribution compressed H2 and liquid H2 for various 

distances 

Some key initial findings: 
• Cost savings for cH2 do not scale at higher pressures, 
• The number of cH2 trucks required increases rapidly 

with distance. 
• LH2 costs dominated by liquefaction cost and energy 

penalty (32%). 

For baseline analysis, all cases kept constant: 
• 400 kg H2/day dispensing rate at fueling station 
• Trailer capacity of 1024 kg, 36 m3 volume 

Production Transmission Dehydrogenation Distribution 
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Baseline levelized cost of H2 at 50,000 kg per day 

• At 50,000 kg H2 per day, methanol produced at high volume in the gulf coast area, and transport to California can 
be cost competitive with “locally” produced gaseous hydrogen. 

• Ammonia and methylcyclohexane have a cost premium over “locally” produced gaseous hydrogen 
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Levelized costs of H2 at various daily demands 
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Storage capacity defined as the g H /l of material 

Analysis of formate salts as hydrogen carriers 

Electrochemistry enables regeneration of H2 

carrier ‘without hydrogen’ 

∆Go = 0 

2

Volumetric capacity 

Preliminary TEA suggests water removal 
is the most expensive process 

TEA analysis suggests efforts are needed to perform regeneration 
at higher concentrations or a use case with cheap source of heat, 
e.g., nuclear reactor 

Deliverable capacity limited by the solubility of formate at 20 °C 
Usable capacity limited by the solubility of bicarbonate at 60 °C 
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Summary 

• Hydrogen carriers can be cost competitive with gaseous hydrogen production 

– Production capacity can influence cost competitiveness 

– Transmission costs can vary depending on nature of the hydrogen carrier 

– Two-way carriers are disadvantaged by two-way transportation costs and replacement costs 

• Application specific requirements need to be considered when determining suitability of a 
hydrogen carrier 

• Boundary conditions should be considered when comparing different TEAs 

• Future activities 

– Including comparison with liquid hydrogen transmission and distribution 

– Expand analysis of other types of hydrogen carriers (e.g., formate salts) 

– Investigation of impact of yield, cycle life, energy use, etc. 

– Consider other potential benefits (e.g., chemical compression) 
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Thank you 
for your attention 

Dr. Ned Stetson 
Program Manager – Hydrogen Technologies 

Hydrogen & Fuel Cell Technologies Office 
Ned.Stetson@ee.doe.gov 
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