

Hydrogen Council Update: Council Priorities & Hydrogen Cost Report

Presented By Traci Kraus, Hydrogen Council Member & Director of Government Relations at Cummins

DOE Hydrogen and Fuel Cell Technical Advisory Committee

March 9, 2020

THE HYDROGEN COUNCIL

THE COALITION

Member company data as of January 2020

A STRONG & DIVERSE GROUP

OUR VISION

Hydrogen has a key role to play in the energy transition

Sources:

"Hydrogen, Scaling Up" report, 2017 "Path to Hydrogen Competitiveness" report, 2020 Based on **real industry data**, the Council sees hydrogen as an enabler of the future energy system, growing its role over time and delivering tangible benefits:

By 2030

H₂ scales up to achieve competitiveness


 ✓ Cost falls sharply, making hydrogen a competitive low-carbon option across 22 applications – equivalent to 15% of annual global energy demand

By 2050

H₂ reaches full potential

- ✓ 6 GT of CO_2 abatement annually
- ✓ 30 million jobs
- ✓ \$2.5 trillion market

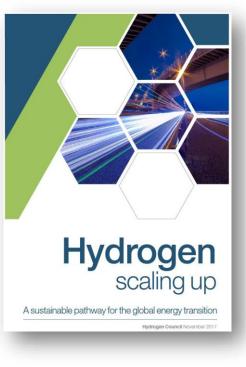
OUR PRIORITIES

1. Bring together key stakeholders to enable investment & large scale projects-Build a business marketplace
-Stimulate investment

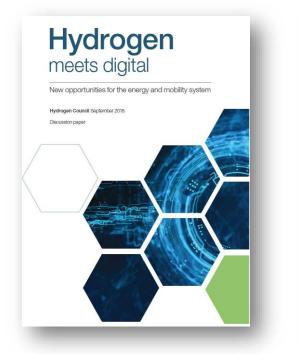
2. Amplify the voice of hydrogen worldwide
-Understand hydrogen perception & challenges
-Address issues & leverage new/broader opportunities

3. Guide policymakers toward appropriate regulations
-Identify key policies & technical recommendations
-Influence through key organizations

4. Ensure transversal coverage of safety topics globally
-Close safety/standards gaps
-Reputation management and crisis preparedness


MAKING THE CASE FOR HYDROGEN

The Council creates studies on the use, development and deployment of hydrogen across sectors and industries. These studies further our understanding of how to make the hydrogen economy a reality through concrete data provided by Council members and informed conversations with key stakeholders around the globe. All studies are available <u>here</u>.


How hydrogen empowers the energy transition

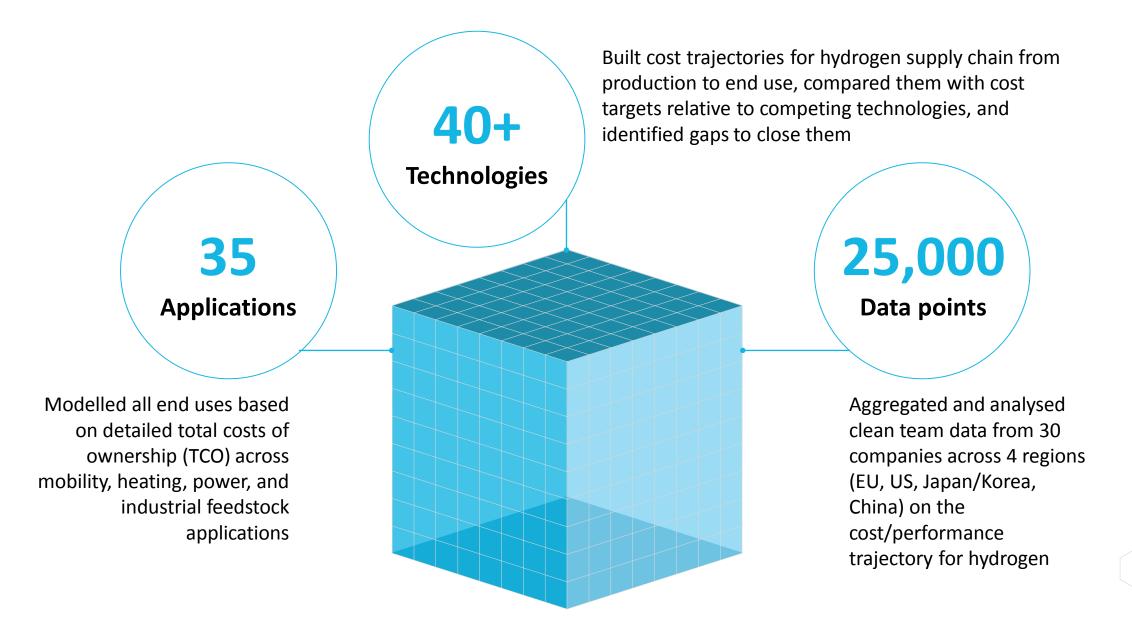
Explores the role of hydrogen in the energy transition and offers recommendations to help accelerate deployment | LINK

Discusses the feasibility of our 2050 hydrogen vision and proposes tangible steps to get there | LINK

Considers how digitization and hydrogen could complement each other in the energy transition | <u>LINK</u>

Presents a cost trajectory for hydrogen to become cost competitive to other low carbon and conventional alternatives by 2030 | LINK

PATH TO HYDROGEN COMPETITIVENESS: A COST PERSPECTIVE


HYDROGEN COUNCIL'S COST STUDY

Hydrogen Council Path to hydrogen competitiveness A cost perspective 20 January 202

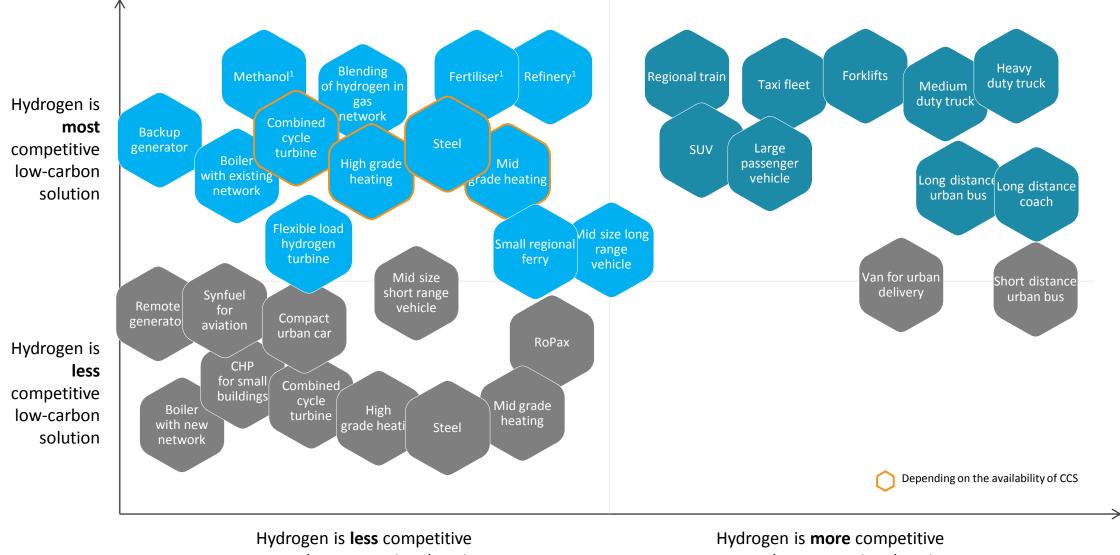
A Pathway to Competitiveness

Detailed cost trajectory
 Key cost reduction levers analysis
 Competitiveness of hydrogen applications versus low carbon conventional alternatives by 2030

METHODOLOGY

KEY TAKEAWAYS

Hydrogen becomes cost competitive...


- Cost of hydrogen production projected to decrease by up to 50% by 2030 for several applications
- For 22 applications, hydrogen can become cost competitive to other low-carbon alternatives, representing 15% of global energy consumption

...Through scale up that impacts three main cost drivers

- 1. Decreased cost of producing low carbon and renewable hydrogen
- 2. Lower distribution and refueling costs thanks to higher load utilization and scale effect on infrastructure utilization
- 3. Decreased cost of components for end-use equipment under scaling up of manufacturing

COMPETITIVE APPLICATIONS

compared to conventional options

compared to conventional options

COST REDUCTION LEVERS

	applications Percentage of total cost 2020	Cost drop 2020-30, Percent	Cost reduction levers to reach target		
leavy-duty trucks		-50%	Scale-up of full supply chain Industrialisation of fuce cell and hydrogen tank manufacturing	lel	
Large passenger vehicle		-45%	Industrialisation of fuel cell and hydrogen tank manufacturing Scale-up and utilisation of HRS		
Boiler		-45%	Lower-cost hydrogen from renewables Higher pip network utilisation due to scale-up of demand	peline	
as turbine		-35%	Scale-up of system size and manufacturing of		
Ammonia roduction		-45%	electrolysers for green hydrogen production		
Hydro	gen production ¹ Hydrogen distribution Equi	oment capex Other opex			

1. Assumes 50/50 blend of low-carbon and average renewable hydrogen

Cost brookdown of budroson

SCALING UP REQUIREMENTS

	Segment	What needs to be ach	nieved	Required premium to 2030, USD bn
	Renewable hydrogen	Renewable production scale up to cost parity with grey in countries with favourable renewables	70 GW	20
HYDROGEN SUPPLY	Low-carbon hydrogen	Low-carbon production at scale until cost parity with grey	~10 Mtpa in 2030	6
	Transportation	Distribution and refuelling station network scale up	<mark>20,000</mark> HRS	10
		Manufacturing scale-up	3 m FCEVs	20
HYDROGEN	Heat and power for buildings	Network and gas boilers upgrades, fuel cost gap bridged	<mark>6m</mark> households	10
APPLICATIONS	Heat and power for industry	Fuel cost gap bridged	115 Twh in 2030	7

THE TIME TO ACT IS NOW

Hydrogen Council

Thank you for your time!

www.hydrogencouncil.com

In @ HydrogenCouncil #HydrogenNow