

Economic and Financial Consulting Incorporated

ENERGY POLICY ACT OF 2005

SEC. 1820. Overall Employment in a Hydrogen Economy

Presented to the Hydrogen Technical Advisory Committee (HTAC)

Washington, DC February 18, 2009

DONALD W. JONES

RCF Economic and Financial Consulting, Inc.

Requirements

"Effects of a Transition to a Hydrogen Economy on Employment in the United States," Section 1820(b) of the Energy Policy Act of 2005 EPACT, P.L. 109-58

- Perform a study of the likely effects of a transition to a hydrogen economy on the overall employment in the United States.
 - The study should consider the following:
 - The replacement effects of new goods and services;
 - The impact on international competition;
 - The requirements of workforce training and education;
 - Multiple fuel cycles (production pathways), including usage of raw materials;
 - Rates of market penetration of technologies; and
 - Regional variations based on geography.
- Issue a report describing the findings, conclusions, and recommendations of the study.

Approach and Methodology

Four Contractors, Industry Advisory Panel, Nationally Recognized Models

Economic and Financial Consulting Incorporated

- Solicitation was issued for the study.
 - ✤ RCF was awarded the contract
 - Supporting contractors:
 - TIAX LLC
 - Argonne National Laboratory
 - Jack Faucett Associates
 - Project utilized an advisory board which included:
 - Dr. John Johnston, ExxonMobil (retired)
 - Dr. Alan Lloyd, International Council on Clean Transportation;
 - Dr. Walter McManus, University of Michigan Transportation Research Institute
 - Mr. Gregory Morris, HydroGen LLC
 - Dr. Robert Rose, U.S. Fuel Cell Council
 - Study conducted over 3 months, July-October 2006
- Recognized models were used for the study.
 - ✤ National employment impacts were estimated from the IMPLAN inter-industry model.
 - Open source model developed and commercialized by Minnesota IMPLAN Group, Inc. ("IMpact analysis for PLANning")
 - ▶ 1500 active domestic and international users
 - DOE H2A models, developed with industry, for hydrogen technology and cost evaluation of production and delivery

➢ After tax internal rate of return: 10%

Depreciation method: MACRS

3

Assumptions

High and Low Penetration Scenarios, DOE Program Goals For Technical Assumptions

- Time frame: 2020 to 2050
- Employment measure: The difference between a non-hydrogen scenario and two scenarios for market penetration of mobile and stationary hydrogen fuel use.
- Scenarios of penetration examined:
 - ✤ Aggressive penetration scenario as defined by the Hydrogen Fuel Initiative (HFI) which estimated 11 MBPD oil savings in 2040
 - Fuel cell vehicles constitute 96% of the light-duty stock by 2050; oil savings of ~13 million B/D
 - Less aggressive penetration scenario as defined by the 2006 report for Government Performance and Results Act (GPRA) which factored in competition from multiple vehicles and fuels:
 - Fuel cell vehicles constitute 38% of the light-duty stock by 2050; oil savings of ~6.6 million B/D
- The program elements have met their critical-path technology targets.
 - Hydrogen produced at \$2.00-3.00/gge
 - ✤ Fuel cell system at \$30/kW
 - Hydrogen storage (target: >300 mile range)
- Feedstock and technology data used in the analysis was derived from the DOE H2A Production and Delivery models.
- Regions selected for study: Upper Midwest, Lower New England and Upper Mid-Atlantic, California, Tennessee and Houston/Galveston
- Stationary and portable fuel cells were assumed to be co-manufactured with automotive fuel cells.

Employment Creation & Replacement at the National Level

Economic and Financial Consulting Incorporated

675 Thousand Net New Jobs by 2050

U.S. Cumulative Gains and Losses from Shifts of Employment					
Scenario		2020	2035	2050	
Numbers of Workers					
Upper Case: Hydrogen Fuel Initiative	Net Effect	182,840	677,070	674,500	
	Gains	252,040	754,030	751,060	
	Losses	69,200	76,960	76,560	
Lower Case: 2006 GPRA Analysis	Net Effect	58,010	184,560	360,740	
	Gains	126,680	242,820	417,390	
	Losses	68,670	58,260	56,650	
Percentage Effects on Total Employment					
Upper Case: Hydrogen Fuel Initiative	Net Effect	0.13%	0.42%	0.37%	
	Gains	0.17%	0.46%	0.41%	
	Losses	0.05%	0.05%	0.04%	
Lower Case: 2006 GPRA Analysis	Net Effect	0.04%	0.11%	0.20%	
	Gains	0.09%	0.15%	0.23%	
	Losses	0.05%	0.04%	0.03%	

Regional Variations in Employment – Aggressive Scenario Example

RCF

Economic and Financial Consulting Incorporated

Lower New England and Upper Mid-Atlantic Region Most Strongly Affected

- Upper Midwest
 - Projected to increase its 2050 employment by 0.06% of the national employment change of 0.37%
 - Scientific and technical services employment grow to support
 - Technical needs of hydrogen production
 - Technological changes in the automotive industry
 - Fabricated metals industry loses employment
- Lower New England and Upper Mid-Atlantic Region
 - ✤ Projected to increase its 2050 employment by 0.08% of the national employment change
 - ✤ Gains are primarily in production and delivery of hydrogen
 - Losses are in the corporate offices of upstream energy companies
- California
 - Projected to increase its 2050 employment by 0.04% of the national employment change
 - High-tech sectors participate in the development of the new hydrogen technologies such as carbon and graphite manufacturing
- Tennessee
 - Projected to increase its 2050 employment by 0.01% of the national employment change
 - Employment gains in hydrogen production
 - No significant employment losses
- Houston/Galveston
 - Projected to increase its 2050 employment by 0.004% of the national employment change
 - * Refining industry suffers in the hydrogen market expansion, compared to the all-gasoline scenario,
 - Experience in variety of energy industries helps them gain employment in
 - Hydrogen production
 - Design and production of energy and chemical pipeline equipment

Effects on International Competition

\$370 Billion/Year Reduction in Oil Imports by 2050

- RCF Economic and Financial Consulting Incorporated
- With or without hydrogen fuel cell vehicles, the report assumes the market share for domestic/foreign automobile production will not change.
- While auto parts manufacturing will continue to shift overseas, little overall impact of a hydrogen transformation on the international location of auto parts manufacturing is predicted.
- Hydrogen will be produced domestically.

Since hydrogen delivery is limited to truck and pipeline, hydrogen will be not be an internationally traded commodity.

• Oil imports will fall as gasoline is replaced with hydrogen.

Case	Oil Savings in 2050	Estimated Import savings*	
Upper Case: Hydrogen Fuel Initiative	11 M BPD	\$370 billion/yr.	
Lower Case: 2006 GPRA Analysis	6.6 M BPD	\$230 billion/yr.	

*Oil price in 2050: \$117/bbl without hydrogen; \$66/bbl with hydrogen (upper case); \$92/bbl with hydrogen (lower case).

Natural gas is not projected to be a significant long-term feedstock for hydrogen production.
Essentially no effect of an expansion of hydrogen markets on gas imports is projected to occur; instead feedstocks are likely to be primarily coal, biomass and renewable electricity.

Education, Training, and Re-Training

Many New Skills Can Be Supplied by Normal Rate of Entry to Labor Force

- The need for new skills will be spread over a number of years, for the most part tending to grow in proportion to the increase in the number of hydrogen vehicles.
- The replacement of gasoline-related skills with hydrogen-related skills will be substantial.
 - Primary need is associated with automotive manufacturing and service sectors.
- Most of the needs for new skills can be supplied by normal rates of entry into the labor force as new workers receive training in hydrogen-related skills.

Study Recommendations

- Develop training programs to ensure the U.S. workforce possesses the appropriate skills.
- Develop training in the after-market areas of repair and recycling.
- Continue education of the public to influence people to pursue jobs in hydrogen and fuel cells.

Summary Finding

• The projected increase in U.S. employment due to hydrogen technology commercialization is 0.20 - 0.37% by 2050.