Extended Durability Testing of an External Fuel Processor for SOFC

Presentation to DOE's Hydrogen and Fuel Cell
 Technical Advisory Committee - June 3, 2010

Mark A. Perna
Rolls-Royce Fuel Cell Systems (RRFCS)
Canton, Ohio

DOE Project Officer: Jesse J. Adams
EERE-Golden Field Office
Golden, Colorado
This information is given in good faith based upon the latest information available to Rolls-Royce Fuel Cell Systems (US) Inc. No warranty or representation is given concerning such information, which must not be taken as establishing any contractual or other commitment binding upon Rolls-Royce Fuel Cell Systems (US) Inc. or any of its subsidiary or associated companies.

This document does not contain any Export Controlled Data.

Presentation Details

- Who is Roll-Royce Fuel Cell Systems
- What is our product
- Why an external fuel processor for SOFC
- Project overview for DE-FG36-08GO88113
- Where are we going

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Rolls-Royce Fuel Cell Systems Canton, Ohio

Rolls-Royce Fuel Cell Systems

RRFCS activities in Canton, Ohio

Our product vision:

1 MWe SOFC generator for distributed power (utility) applications

- High electrical efficiency (60\%)
- Low environmental impact (low emissions and low noise)
- Initial development targeting pipeline natural gas

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Subsystems in a SOFC Power plant

Why an external fuel processor for SOFC?

- Provides all gas streams needed by the SOFC
- Eliminates need for on-site storage of high-pressure gases
- Uses only pipeline natural gas and air to provide:

1) Nonflammable reducing gas for start-up \& shutdown
2) Hydrogen for heat-up and part-load operation
3) Desulfurized natural gas for normal operation

Project Overview - Durability Testing of EFP for SOFC

Timeline

- Project start: 01/01/2009
- Project end: 12/31/2011
- Percent complete: 33\% (5/31/10)

Budget

- Project funding total $\$ 1,968,000$
- DOE share = \$984,000
- RRFCS share $=\$ 984,000$
- Funding received in FY08-\$984K
- Funding in FY09 - \$0.0K
- Funding in FY10-\$0.0K

Barriers

Fuel Processor

- Durability
- Performance
- Start-up and Shutdown time
- Transient operation

Partners

- RRFCS - project lead
- Ohio Department of Development / Stark State College of Technology
- Funding for Outdoor Test Facility
- Student Interns

Overall Project Objectives

- Conduct long-term testing with full-size components in relevant environments:

1) Start-gas subsystem - up to 1,000 hours in outdoor environment (hot/cold) 5-year service life
2) Desulfurizer subsystem - 8,000 hours in an outdoor environment (hot/cold)

1-year maintenance cycle and 5-year service life
3) Synthesis-gas subsystem - up to 1,000 hours in warm environment

5-year service life

- Evaluate the impact of ambient temperatures (hot and cold environments) and long-term operation on key components such as catalysts, sorbents, heat exchangers, heaters, valves, reactors, piping, insulation, control system, and safety system.

Start-gas subsystem generates non-flammable reducing gas

- Low-oxygen content oxidant stream
- Small amount of pipeline natural gas
- Pressurized catalytic reactor to generate nonflammable reducing gas for start-up and shutdown
- Air-cooled heat exchanger cools product gas
- Automatic control system

Desulfurizer subsystem generates high-pressure desulfurized natural gas

- Pipeline natural gas (sulfur<10 ppmv) and compressed air as reactants
- Pressurized catalytic reactor for oxy-desulfurization
- High-capacity sulfur-oxide sorbent (total outlet sulfur < 100 ppb)
- Automatic control system

Synthesis-gas subsystem generates a hydrogen-rich gas for SOFC heat-up and low-load operation

- Pipeline natural gas and compressed air
- Pressurized catalytic reactor

Rapid start-up (minutes)
Generate hot synthesis gas
Hydrogen and carbon monoxide \leq Maximum

- Automatic control system

Synthesis-gas subsystem durability testing results

Synthesis-Gas Reactor Start-up

- Rapid start-up achieved (< 1 minute) - generating significant hydrogen
- Hydrogen generation follows catalyst outlet temperature

Synthesis-gas subsystem results (cont.)

Synthesis gas - hydrogen

- Hydrogen generation meets specification and life requirement

Synthesis-gas subsystem results (cont.)

Synthesis gas - carbon monoxide

- Carbon monoxide generation meets specification and life requirement

Technical accomplishments and progress
Milestones

No.	Description	Planned	Actual	Status
1	Start Preparation of Synthesis-gas Subsystem	January 2009	January 2009	completed
2	Begin Synthesis-gas Subsystem Durability Testing	April 2009	September 2009	completed
3	Start Preparation of Desulfurizer Subsystem	July 2009	December 2009	completed
4	Complete Synthesis-gas Subsystem Durability Test	September 2009	April 2010	completed
5	Complete 1,000 hours Operation of Desulfurizer	September 2010	on schedule	
6	Start Preparation of Start-gas Subsystem	July 2009	December	completed
7	Begin Start-gas Subsystem Durability Testing	September 2010		on schedule
8	Complete Desulfurizer Subsystem Test	October 2011		on schedule
9	Complete Start-gas Subsystem Test	October 2011		on schedule
10	Complete Final Report	December 2011		on schedule

Project Summary

- An approach was developed for evaluating durability and performance of an external fuel processor for a 1 MWe SOFC
- Durability testing completed on Synthesis-gas subsystem
- The Desulfurizer and Start-gas subsystems have been installed in the outdoor test facility
- Commissioning Desulfurizer and Start-gas rigs is underway

Where are we going?

1 MWe SOFC generator for distributed power (utility) application

- Future development targeting green fuels such as biogas/digester gas, landfill gas, and coal synthesis gas

This presentation does not contain any proprietary, confidential, or otherwise restricted information

