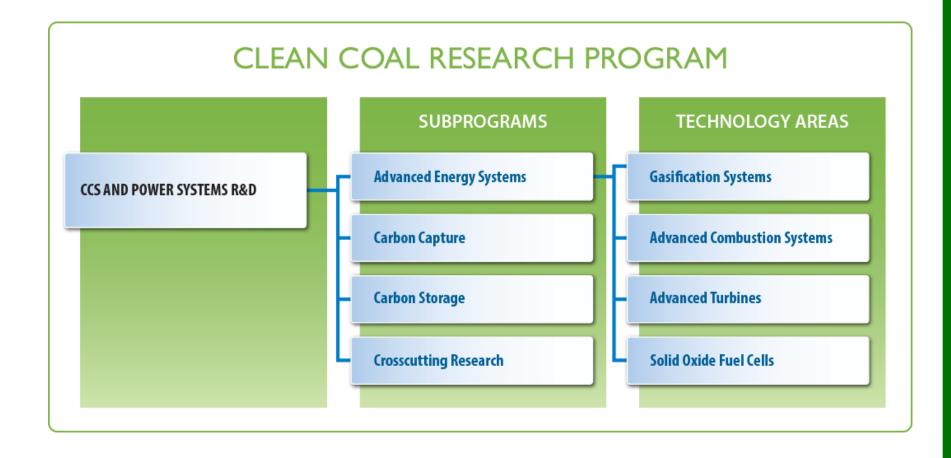
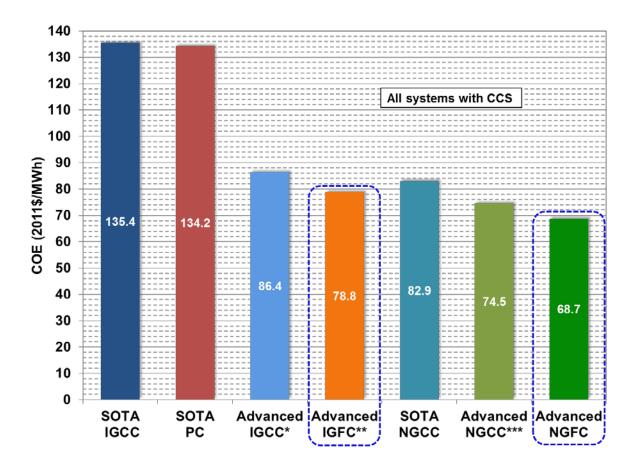


SOFC Program Overview


Dr. Darren Mollot

Director, Clean Energy Systems

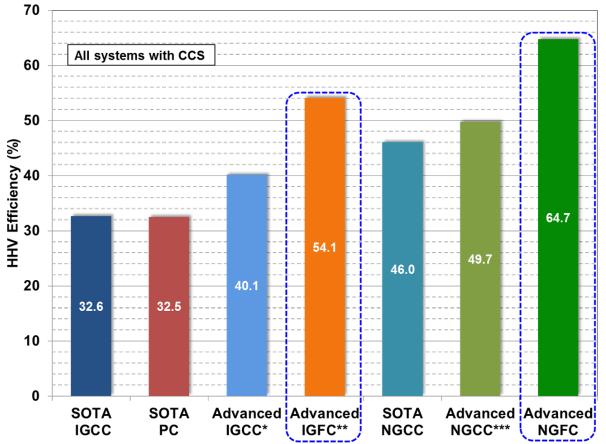
Office of Clean Coal



Clean Coal Research Program

SOFC Power Systems - COE

* Advanced IGCC system includes: coal feed pump, warm gas cleanup, H_2 membrane, advanced H_2 turbine, and ITM

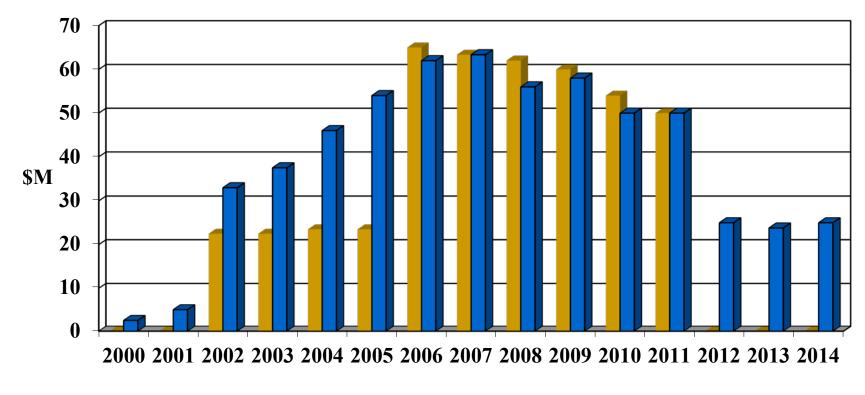

** Advanced IGFC system includes catalytic gasifier, 0.2% degradation rate, and internal reforming

*** Advanced NGCC system features a J-class turbine with a state-of-the-art carbon capture system

Source: NETL Systems Analysis

SOFC Power Systems - Efficiency

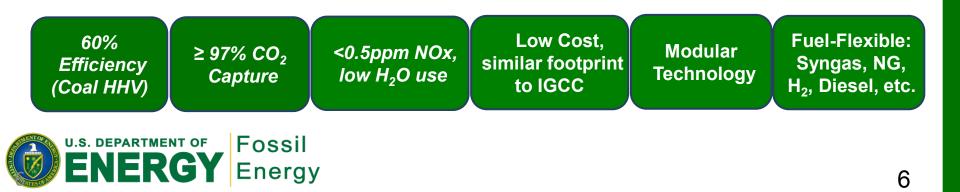
* Advanced IGCC system includes: coal feed pump, warm gas cleanup, H₂ membrane, advanced H₂ turbine, and ITM

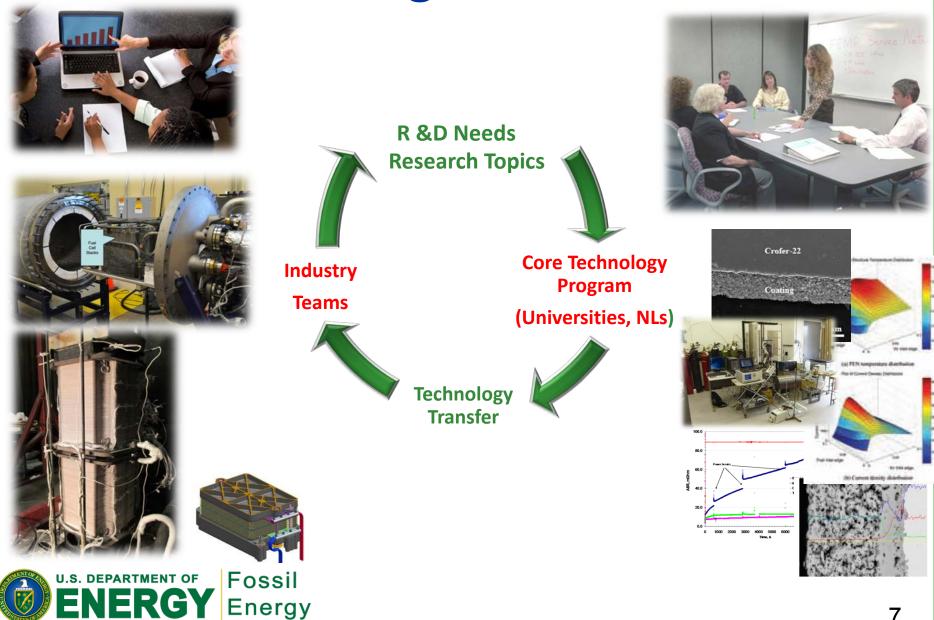

** Advanced IGFC system includes catalytic gasifier, 0.2% degradation rate, and internal reforming

*** Advanced NGCC system features a J-class turbine with a state-of-the-art carbon capture system

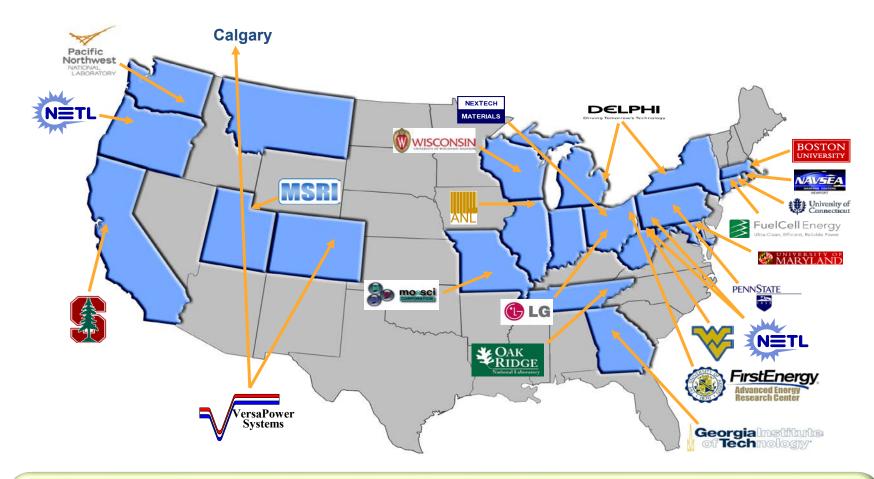
Source: NETL Systems Analysis

Solid Oxide Fuel Cell Program Budget History

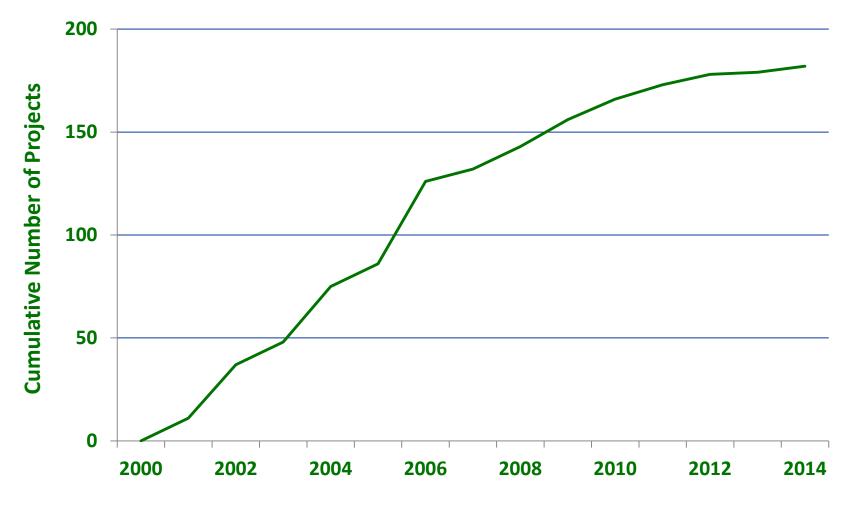




FE SOFC Program Mission


- Enable the generation of efficient, low-cost electricity from domestic coal and natural gas with near-zero emissions of CO₂ and air pollutants and minimal use of water in central power generation applications.
- Increase reliability, robustness, and durability of cell and stack technology.
- Provide the technology base to permit grid-independent distributed generation applications.

SOFC Program Structure


SOFC Project Portfolio

The SOFC program maintains a diversified portfolio of more than 20 short-, mid-, and long-term R&D projects

The SECA Program – A Decade of Growth

Since its inception in 1999 as SECA, the SOFC Program has funded approximately 175 projects Fossil

U.S. DEPARTMENT OF

Energy

SOFC Program Core Technology Program

- Focus on:
 - Technologies critical to the commercialization of SOFC technology
 - Cost reduction, improved performance, reduced degradation
 - Computational tools and modeling
 - Novel cell and stack concepts, advanced processing techniques, and novel fuel cell power systems

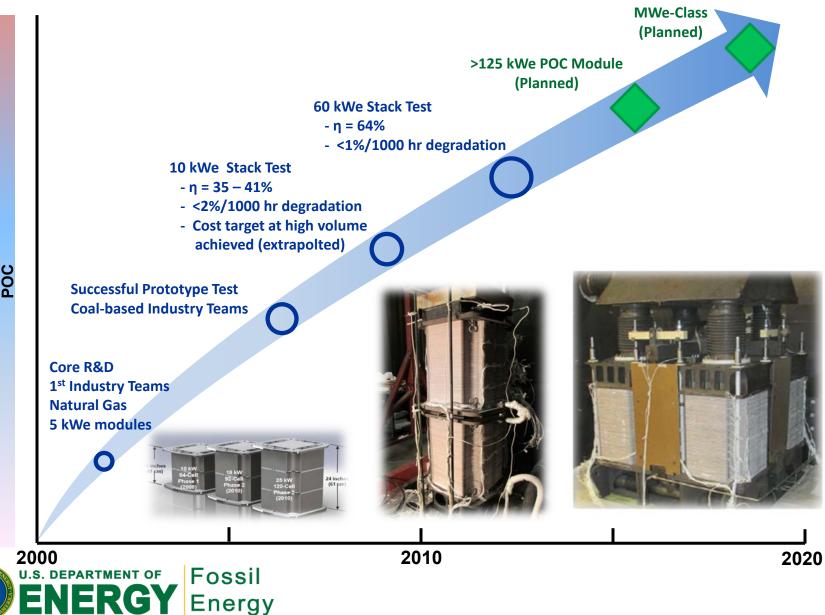
The Core Technology Program, made up of universities, national laboratories, small businesses, and other R&D organizations, addresses applied technological issues common to all Industry Teams.

SOFC Program Industry Teams FY13 Status

- LG Fuel Cell Systems
- Pressurized Technology
- 18 kWe stack test; 3,000 hrs
- Degradation rate ~1.1% /1,000 hrs

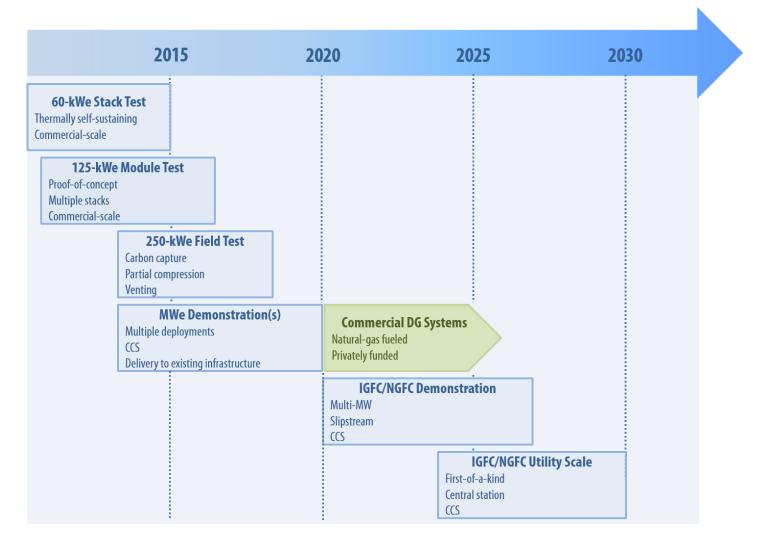
<u>Delphi</u>
 Atmospheric Pressure Technology
 9 kWe stack test; 3,500 hrs
 Degradation rate <0.5% /1,000 hrs

<u>Fuel Cell Energy</u>
 Atmospheric Pressure Technology
 60 kWe stack test; 1,130 hrs
 Degradation rate <1% /1,000 hrs
 TRL 6


SOFC Program Industry Teams

- Developing unique and proprietary SOFC technology
- Scope includes cells to fully integrated SOFC power systems
- Pilot-scale and first-of-a-kind commercial demonstrations
- Held to a common set of performance and cost metrics
 - Stack cost: \$225/kWe
 - System cost: \$900/kWe
 - System degradation: 0.2% /1000 hrs

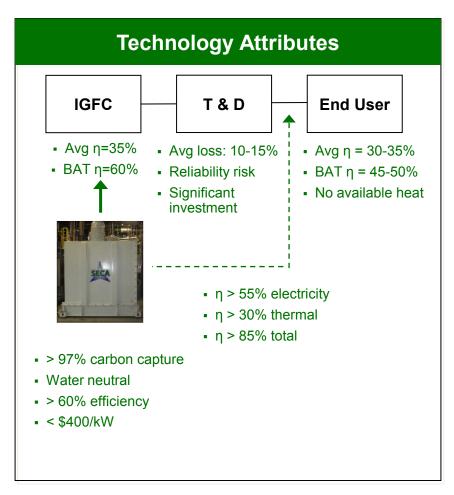
The multi-team approach provides technology diversification, offers insurance against business environment risk, and reduces program dependency on single developer



SOFC Program Technology Progress

Stacks POC

SOFC Program Timeline



SOFC is a Transformational CCS Technology

Trends / Drivers / Benefits

- Green technology
 - Low emissions
 - >97% CO₂ capture potential
 - Renewable fuel
- High quality heat & power
- High efficiency
- High reliability/availability
- Low O&M cost, minimal moving parts
- Low degradation
- No water consumption (except startup)
- Quiet (65 DBA @ 10 m)
- Recyclable at the end of useful life
- · Siting flexibility, easily permitted
- Enhances energy independence and security

SOFC: Meets DG Market Need

Path to Utility Scale Power Generation w/o CO₂ Emissions

- Distributed generation market opportunity: electric power (5 kWe to MWe-class units)
- SOFC DG electric power application
 - Provides > 20 percentage point gain in efficiency
 - Results in significant CO₂ emission reduction
- Commercial, cost-competitive, high efficiency SOFC DG product by 2025
 - Consistent with technology development plan
 - ~30 MWe installed capacity to achieve competitive cost; assumes
 R&D reduces system cost to ~\$6,000/kWe
- Projected learning to achieve competitive cost is consistent with similar technology commercialization experience

SOFC DG applications provide pathway to utility scale coal and natural gas-fueled power plants with efficiencies >60% and >97% carbon capture

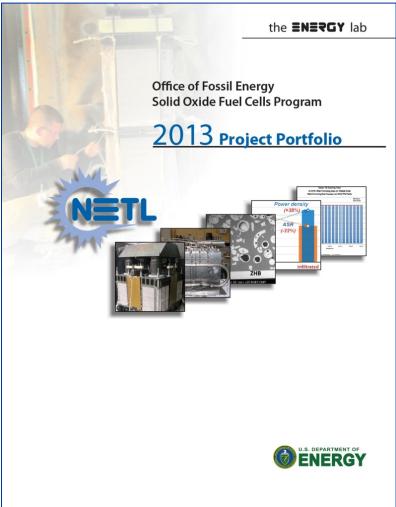
Summary

- SOFC offers a potential pathway to low cost CCS for fossil based systems
- Near term opportunities for commercial demonstration and deployment exist in the distributed generation market
- SOFC offer other benefits, e.g., high efficiency, deep turndown, fuel flexibility, sulfur tolerance, modular design, high grade waste heat

Back-Up

For More Information on the SOFC Program

Office of Fossil Energy: <u>www.energy.gov/fe/office-fossil-energy</u>


NETL Website: www.netl.doe.gov/

SOFC Program:

www.netl.doe.gov/technologies/coalpower /fuelcells/index.html

Reference Shelf:

- SOFC Program FY13 Project Portfolio
- SOFC Technology Program Plan
- Technology Readiness Assessment
- Past SECA Workshop Proceedings
- Systems Analysis
- Fuel Cell Handbook

Fuel Cells 2014 FOAs

1. Improved Reliability of Solid Oxide Fuel Cell Systems Focused on Industry Estimated Funding: \$15 M (2-3 awards) Period of Performance: 18 months

2. Solid Oxide Fuel Cell Core Technology Program Focused on R&D in Support of Industry Estimated Funding: \$6.4 M (5-8 awards) Period of Performance: 36 months

> Issued: February 14, 2014 Close: March 31, 2014

CCS & Power Systems

	(d	(dollars in thousands)				
	FY 2014	FY 2015				
	Enacted	Congressional	FY 2015 vs	FY 2015 vs FY 2014		
		Request	\$	%		
CCS AND POWER SYSTEMS						
Carbon Capture	92,000	77,000	(15,000)	-16%		
Carbon Storage	108,766	80,084	(28,682)	-26%		
Advanced Energy Systems	99,500	51,000	(48,500)	-49%		
Crosscutting Research	41,925	35,292	(6,633)	-16%		
NETL Coal R&D	50,011	34,031	(15,980)	-32%		
TOTAL CCS AND POWER SYSTEMS	392,202	277,407	(114,795)	-29%		

• The budget request takes into consideration the need for budget restraint across all research and development (R&D) program areas.

- The majority of the reduction is from Advanced Energy Systems. The request continues development of pressurized oxy-combustion and chemical looping combustion systems. Funding for fuel cells is narrowed to materials research essential to commercial viability.
- Carbon Capture and Carbon Storage are reduced but maintaining priority activities associated with capture for fossil fuel-fired plants and large-scale injection and monitoring operations.
- The NETL Coal R&D budget reflects a \$16M reduction from FY2014; however, the funding is consistent with levels prior to FY 2014. The FY2014 enacted amount included extra funding to perform a special assessment of recovering rare earth elements.

Advanced Energy Systems

	(dollars in thousands)				
	FY 2014	FY 2015			
	Enacted	Congressional	FY 2015 vs FY 2014		
		Request	\$	%	
Advanced Energy Systems					
Advanced Combustion Systems	18,500	15,000	(3,500)	-19%	
Gasification Systems	36,000	22,000	(14,000)	-39%	
Hydrogen Turbines	15,000	11,000	(4,000)	-27%	
Coal and Coal Biomass to Liquids	5,000	-	(5,000)	-100%	
Solid Oxide Fuel Cells	25,000	3,000	(22,000)	-88%	
TOTAL ADVANCED ENERGY SYSTEMS	99,500	51,000	(48,500)	-49%	

- The Advanced Energy Systems (AES) mission is to increase the availability and efficiency of fossil energy systems integrated with CO₂ capture, while maintaining the highest environmental standards at the lowest cost.
- Due to funding priority, the Solid Oxide Fuel Cells funding was reduced to focus on the development of CCS technologies. Materials research will continue.
- Coal and Coal Biomass to Liquids will continue collaboration with the DOD, but no funds are requested in FY 2015.
- Gasification Systems will maintain priority development of advanced oxygen production, dry feed technologies, warm-gas cleanup, and hydrogen separation.

