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25 Years of Persistence

Fundamentals Commercialization
| 1988 2014
L S

From one “Cube” to another

1988 - Discovered ordering mechanism in bismuth oxide electrolytes

1989 - Identified reduction stability issue in bismuth oxide electrolytes
- Developed bilayer electrolyte concept to address stability issue

1989 to 1993 - Tried to obtain funding to demonstrate bilayer electrolyte concept

1993 - Demonstrated bilayer electrolyte under GRI support and prepared patent applications

1994 to 1999 - Tried to obtain funding to develop bilayer electrolyte SOFC

1999 to 2002 - DE-AC26-99FT40712: Stable High Conductivity Electrolytes for Low Temperature SOFCs
- Determined effect of local structure on conductivity
- Developed record highest conductivity oxide-ion electrolyte DWSB
- Demonstrated relative bilayer thickness effect on OCP

- Achieved near theoretical OCP with bilayer electrolyte SOFCs
2002 to 2009 - Leveraged multiple related funding sources to continue cell development

2009 - Demonstrated record high power density 2 W/cm? at 650°C with bilayer electrolyte SOFC
2009 to 2012 - Tried to obtain funding to advance development of bilayer electrolyte SOFCs
2012 - Redox Power Systems formed
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Solid State Fuel Cell Technologies
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Anodes and Fuel Flexibility

0.9 : T 0.7 SOFC with H, and JP5 reformate

06
05 &
- b3
- g
= 04 e
= 5
€ . o
E 0.3 E
2
02 O
3
"N
0.1
10
Current density (A/lcm?)
0.5

£044 T=550°C

o
Y
|

Stable SOFC Performance on JP5 reformate
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Only ~20% drop in power with JP5
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No Carbon deposition at 550°C

Kang Tack Lee, Colin M. Gore, and Eric D. Wachsman, Feasibility of
low temperature solid fuel cells operating on reformed hydrocarbon
fuels, Journal of Materials Chemistry, 10.1036/c2jm35590f,
www.rsc.org/materials



Intermediate Temperature SOFCs (< 800 °C)
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Why Lower Temperature SOFCs (< 600 °C)?
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Metallic Interconnects
Lower cost and greater reliability

Easier Sealing
Lower cost and greater reliability

Smaller Thermal Mismatch
Greater reliability

Less Insulation
Lower cost

Rapid Startup with Less Energy Consumption
Lower cost and better performance

Transportation applications

Need higher conductivity electrolytes
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Higher Conductivity Electrolytes
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* Fundamentals of oxide transport

*Conductivity of 8Dy4WSB is
— 0.57 S/cm at 700°C
— 0.10 S/cm at 500°C

*Highest conductivity of any stabilized
Fluorite oxide

- 3X that of ESB
- 10X that of GDC
- 100X that of YSZ

*Optimized DWSB composition for 650°,
500° & 300°C operation

*Demonstrated co-doping enhancement
of conductivity with SNDC



Stability of High Conductivity Electrolytes in Reducing Conditions
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Fig. 4. X-ray diffraction of 20 mol% ESB: (a) as received; (b)
annealed 4 h at 700 °C in H,/H,0 Py, =10-%' atm).

Wachsman, et al., Solid State Ionics, 52,216 (1992)
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Fig. 6. Electrical conductivities as a function of oxygen partial
pressure at 800°C: (O) (Ce0;)03(SmO,5)o2 (A)
(Ce0,)05(GdO, 5)0.2-

Eguchi, et al., Solid State lonics, 52, 168 (1992)

Weak M-O bonds lead to high
conductivity but also low
thermodynamic stability



Bilayer Electrolyte
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E. D. Wachsman, P. Jayaweera, N. Jiang, D. M. Lowe, and B.G. Pound, J. Electrochem. Soci., 144, 233 (1997).
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Thin Bilayer Electrolyte OCP
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* Near theoretical OCP achieved with anode supported thin
bilayer electrolytes

* Need to optimize both GDC and ESB thicknesses
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Bilayer Electrolytes for LT-SOFC

Integrating new
materials and
microstructures to
achieve world record
performance
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J. S. Ahn, D. Pergolesi, M. A. Camaratta, H. Yoon, B. W. Lee, E. Traversa and

E. D. Wachsman, Electrochem. Comm., 11, 1504 (2009).



Volumetric Power Density

~0.0

~0.1

2 W/cm?2 =10 W/cm3

Steel Interconnect/gas channels
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Volumetric Power Density
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Gravimetric Power Density

Electrodes ~30% porous

~0.0

5cm

~0.1

Steel Interconnect/gas channels ~70% porous

0.7 X 7g/cc X 0.05cm + 0.3 X 8g/cc X 0.15cm = ~0.6 g/cm?

& KEAROL AR ~2 W/cm?/ 0.6 g/cm? = ~3 kW/kg
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Energy Storage Figure of Mertit
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V. Srinivasan, Batteries for Vehicular Applications,
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Low Temperature Solid Oxide Fuel Cells

Lowering the Temperature of Solid Oxide Fuel Cells
— Science (2011)

Role of Solid Oxide Fuel Cells in a Balanced Energy Strategy
— Energy & Environmental Science (2012)

Next-Generation Flex-Fuel Cells Ready to Hit the Market — Scientific American (2011)

Gasoline Fuel Cell Would Boost Electric Car Range — Technology Review (2011)

» Picked up by numerous news papers and websites around the world

* A highlight of The Year in Energy — Technology Review (2011)

2012 Fuel Cell Seminar & Energy Expo Award
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Next Generation Solid OX1de Fuel Cells

Redox Power Systems

Launched in 2012 to 4
commercialize this

next generation
SOFC technology

UNIVERSITY OF
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Next Generation Solid Oxide Fuel Cells
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Next Generation Solid Oxide Fuel Cells

An Inexpensive Fuel Cell Generator — Technology Review (2013)

Avoiding the Power Grid — Technology Review (2013)

Could This Be the Fuel Cell to Beat All Fuel Cells?
— GreentechMedia (2013)

Redox Power Plans to Roll Out Dishwasher-Sized Fuel Cells that
Cost 90% Less than Currently Available Fuel Cells
— Forbes (2013)

The Navy Has Fuel-Cell Generators; Will You Have Them Soon, Too?
— The Atlantic (2013)

At Redox Power Systems, the Future of Electricity Lies in Fuel Cells
— Washington Post (2013)

Sir William Grove Award
- International Association for Hydrogen Energy (2014)
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SOFC Cost

>$1500/kW (2000)

600 + Anode Support/Advanced Cathode,
Seal & Interconnect
* Low Cost Manufacturing
+ Increased Power Density, Voltage &
Cell Size « Atmospheric or Pressurized Fuel Cell
450 « Separate Fuel to Oxy-Combustion
« 25% Dry Methane/Catalytic, Methanation
or NG Pipeline
300 $ 275/kW -Establish Infrastructure
*Manufacturing Capacity
N
150 \ $ 175/kW — . SECA/SOFC
EERE/PEMFC \ Transition to Coal Applications
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$5UKW % 44/kW
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Time line (year)
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Increasing Performance & Driving Down Temperature
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Scale-Up and Stack Development

» Developed repeatable and manufacturable
10 cm x 10 cm cell fabrication processes

 Transferred UMD fabrication technology
to Industry Partners

» Fabricating and testing multi-cell short stacks

* Negligible difference in multi 10x10 cell stack
performance between Hz and 100% CHa Slip

~
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Scale-Up and Stack Development

25 kW nominal
32 kW peak
system

r0cm 10cm

1cm

Initial 1 kKW short stacks

10cm  10¢cm 250 kW nominal

320 kW peak
10 cm system
Then 10 kW stacks
® REDOX
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Redox Core Technology Enables

Commercial &
Industrial Power
25 kW to 250 kW

(REDOX)
Bilayer Cell ~200 W

(REDOX)

1 to 10 kW Stacks

Datacenter _ Residential Combined Heat
Embedded & Power 1 to 10 kW,
Power 10 kW

& KIS ( REDOX
Energy Research Center 24
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