

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Fuel Cell Technologies Office Update

Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Meeting

December 12, 2018 – Washington DC

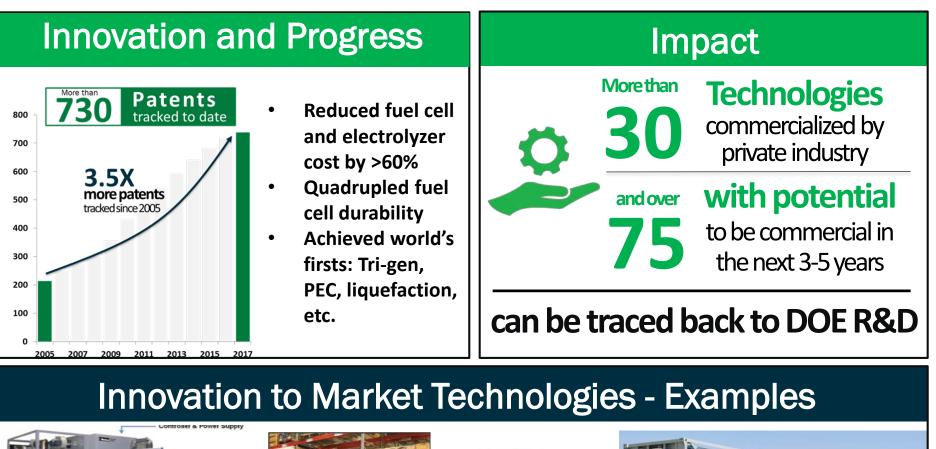
- HTAC Scope
 - Membership
 - Energy Policy Act (EPACT) 2005 Title VIII
- Program History and Updates
 - H2@Scale
 - Budget and Progress
- Next Steps
 - Examples of outputs and recommendations

2018 HTAC Membership

HTAC Member and Affiliation	Expertise	HTAC Member and Affiliation	Expertise	
Aszklar, Henry Independent Energy Consultant	Energy Project Development & Financing	Markowitz, Morry Fuel Cell and Hydrogen Energy Association (FCHEA)	Hydrogen and Fuel Cells Industry Association	
Ayers, Katherine Nel Hydrogen (Proton OnSite)	Hydrogen Production Companies	Marsh, Andrew Plug Power	Stationary and Transportation Fuel Cell Technology Manufacturing	
Azevedo, Inês Carnegie Mellon University	Behavioral/ Decision-Making Science	Mizroch, John John F Mizroch, LLC	Clean Energy Technology Exports and Investments	
Ffolkes, Marie Air Products and Chemicals, Inc.	Hydrogen Production and Delivery	Nocera, Daniel Harvard University	Hydrogen Production R&D	
Freese, Charles F. (Chair) General Motors Company	Automotive Companies	Novachek, Frank	Utilities (Electricity and	
Irvin, Nick Southern Company	Utilities/Advanced Energy Systems R&D	Xcel Energy	Natural Gas)	
Koyama, Harol H2 PowerTech	Stationary Power and Markets	Powell, Joseph (Vice Chair) Shell Global Solutions	Fuels Production and R&D	
Leggett, Paul Mithril Capital Management, LLC	Venture Capital / Investment	Rogers, Paul US Army Tank-automotive and Armaments Command (TACOM)	Department of Defense Hydrogen and Fuel Cell R&D	
Leo, Anthony FuelCell Energy	Stationary Fuel Cell and Hydrogen Production Technology Manufacturing	Scott, Janea California Energy Commission	State Energy Policies and Regulations	
New members as o		Thompson, Levi University of Delaware	Physical Sciences	

New members as of July 2018

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Scope


To advise the Secretary of Energy on:

- 1. The implementation of programs and activities under Title VIII of EPACT
- 2. The safety, economical, and environmental consequences of technologies to produce, distribute, deliver, store or use hydrogen energy and fuel cells
- 3. The DOE Hydrogen & Fuel Cells Program Plan

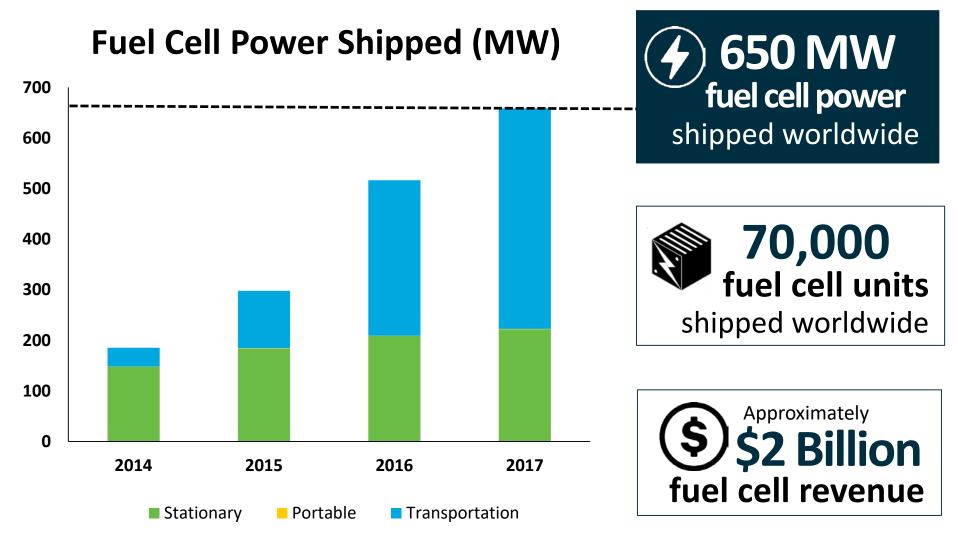
Title VIII Sec. 802- Purposes

- Enable and promote comprehensive development, demonstration, and commercialization of H₂ and fuel cells with industry
- 2. Make **critical public investments** in building strong links to private industry, universities and National Labs to expand innovation and industrial growth
- 3. Build a mature H_2 economy for **fuel diversity** in the U.S.
- 4. Decrease the **dependency on foreign oil & emissions** and enhance energy security
- Create, strengthen, and protect a sustainable national energy economy

DOE-funded Innovation Driving Impact

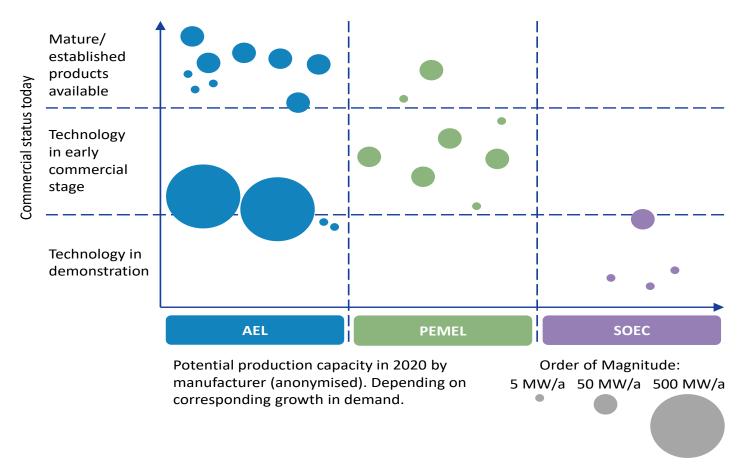
Electrolyzers - Giner

Fuel cell systems - Plug Power



Electrolyzers - Proton

Hydrogen Tube Trailers – Hexagon Lincoln


Fuel Cell Shipments - Growth by Application

Source: DOE and E4Tech

Electrolyzers

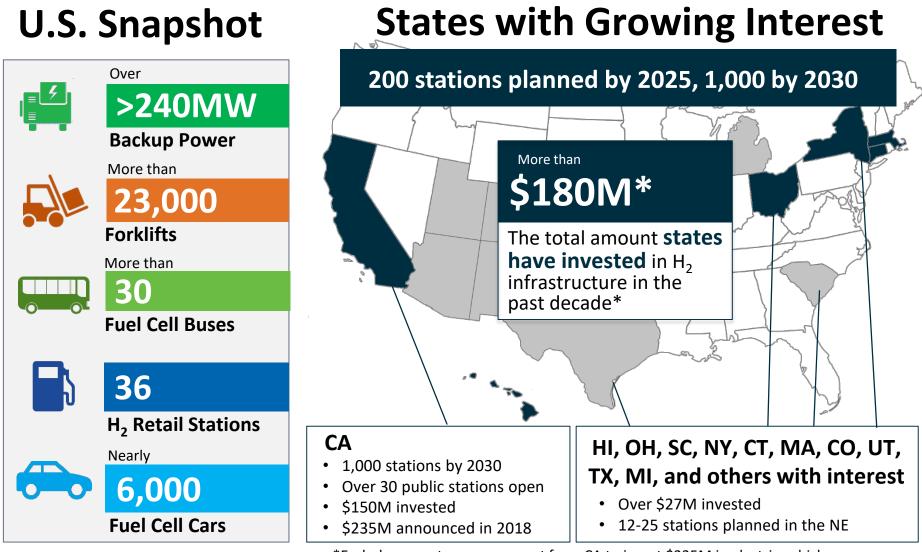
Global sales estimated at 100 MW/year*

*Courtesy of NOW, E4tech and partners: A collaborative effort to assess electrolyzer market potential

© Fraunhofer ISE

für Verkehr und digitale Infrastruktur

Bundesministerium



U.S. DEPARTMENT OF ENERGY

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Multiple H₂ and Fuel Cell Applications in the U.S.

*Excludes recent announcement from CA to invest \$235M in electric vehicles

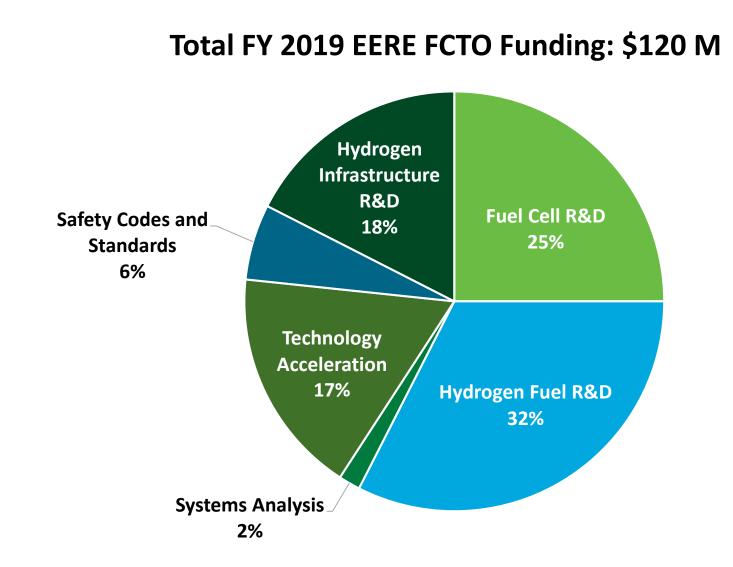
Fuel Cell Technologies Office (FCTO) Overview

Early R&D Focus	innova				/ security / resiliency ; domestic economy	
Early R&D Areas			Impact	t		
	E		60% Lower Fue	el Cell Cost	Leverage private sector	
Fuel Cells	Hydrogen	Infrastructure		\$50/KW	Enabling	
catalysts	 Production pathways Advanced materials for storage 	 Safety Manufacturing Delivery components Others 	2006 Greater Fuel Cell I 4X more ho of fuel cell durability s	urs	Linabiling Geoscale, U.S. Department of Energy	
PGM = Platinum group metals MEA = Membrane Electrode Assembly			80% Lower Electro for H ₂ production sin			

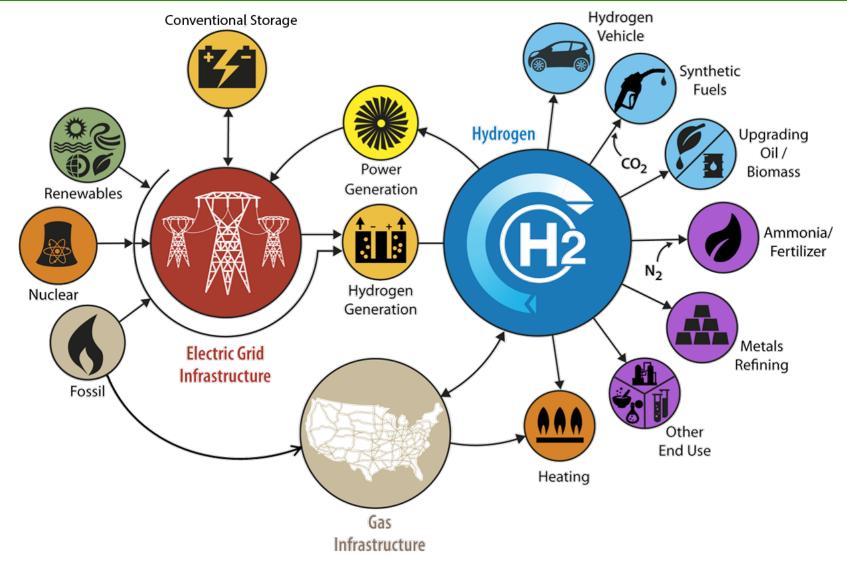
DOE Program Funding

DOE-wide Hydrogen and Fuel Cells Funding

EERE – Fuel Cell Technologies Office

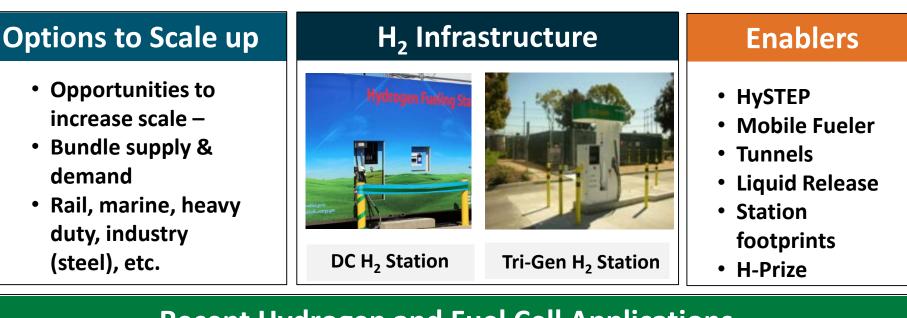

	FY 2018
Office	(\$ in thousands)
EERE (FCTO)	115,000
Science (Basic/xcut)	19,000
Fossil Energy (SOFC)	30,000
Total	~164,000

Note: ARPA-E funding dependent on program selected each fiscal year


	FY 2017	FY 2018	FY 2019				
Key Activity	(\$ in thousands)						
Fuel Cell R&D	32,000	32,000	30,000				
Hydrogen Fuel R&D	41,000	54,000	39,000				
Hydrogen Infrastructure R&D	-	-	21,000				
Systems Analysis	3,000	3,000	2,000				
Technology Acceleration	18,000	19,000	21,000				
Safety, Codes and Standards	7,000	7,000	7,000				
Total	101,000	115,000	120,000				

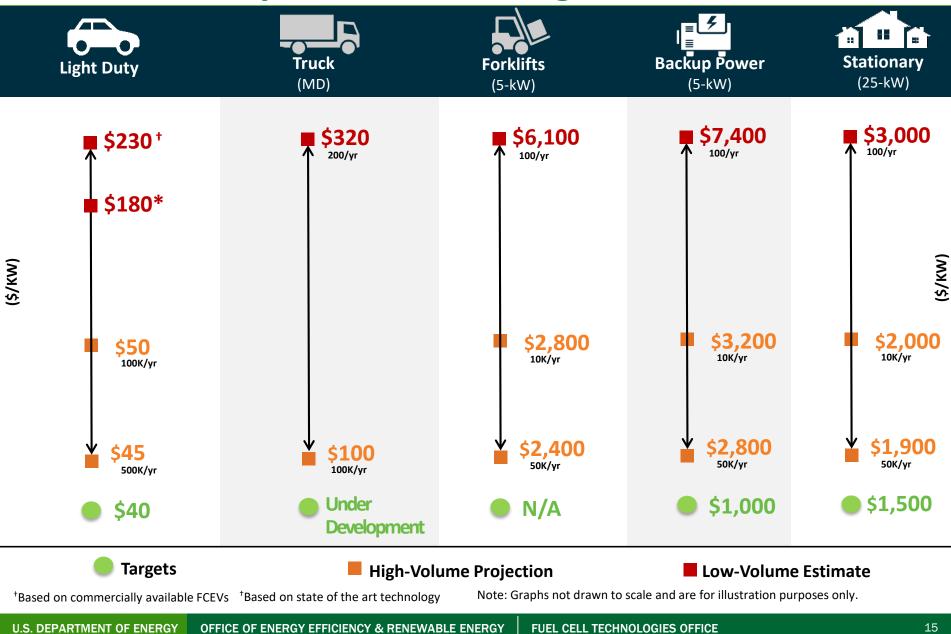
EERE: Office of Energy Efficiency and Renewable Energy

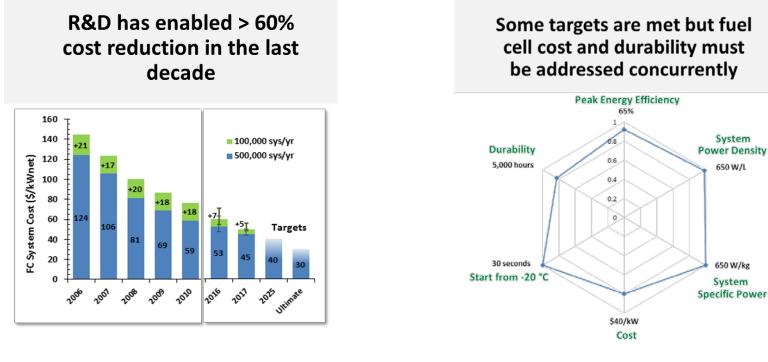
Fuel Cell Technologies Office Funding - FY 2019

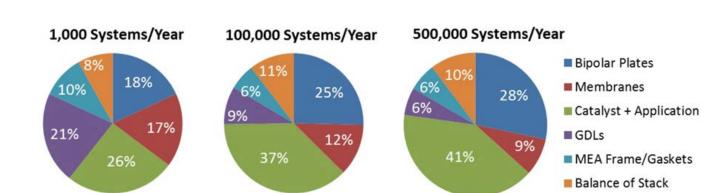


H₂@Scale: Enabling affordable, reliable, clean, and secure energy across sectors

More information at: www.energy.gov/eere/fuelcells/h2-scale

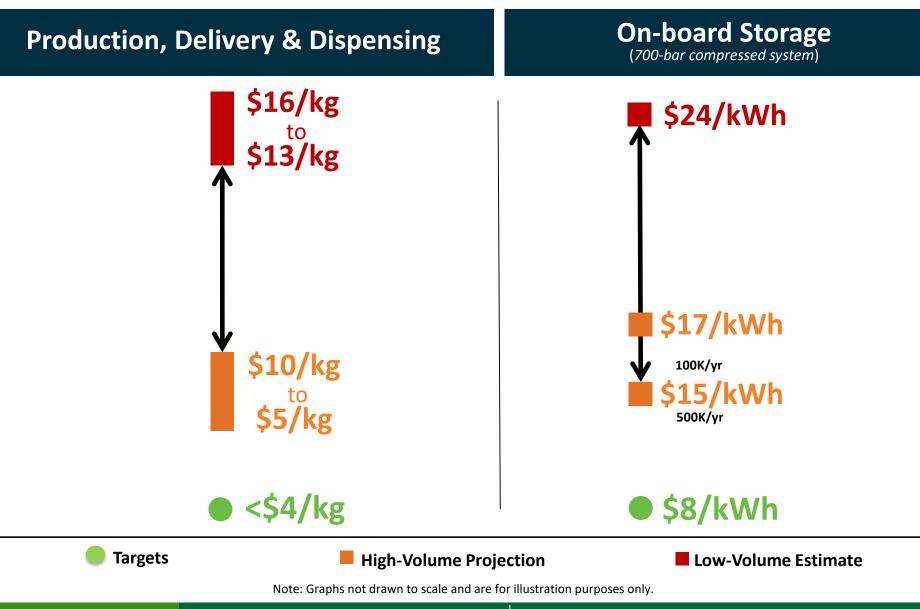

Examples of Key Activities


Recent Hydrogen and Fuel Cell Applications



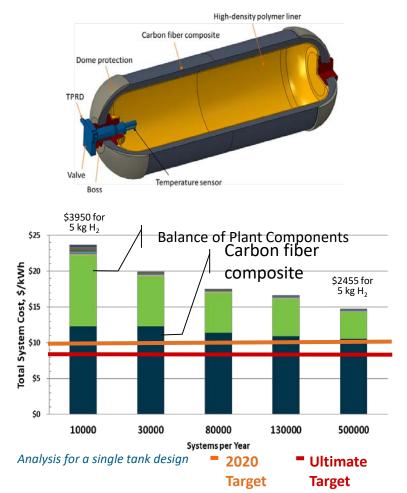
Cost remains a challenge: DOE fuel cell system cost vs. targets

Fuel Cell Status vs. Targets

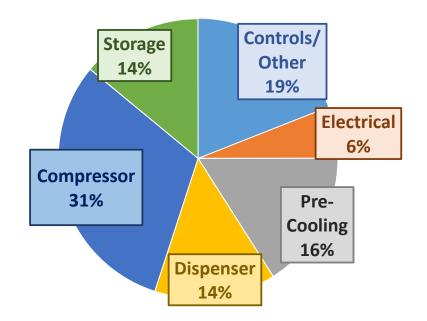

System

650 W/L

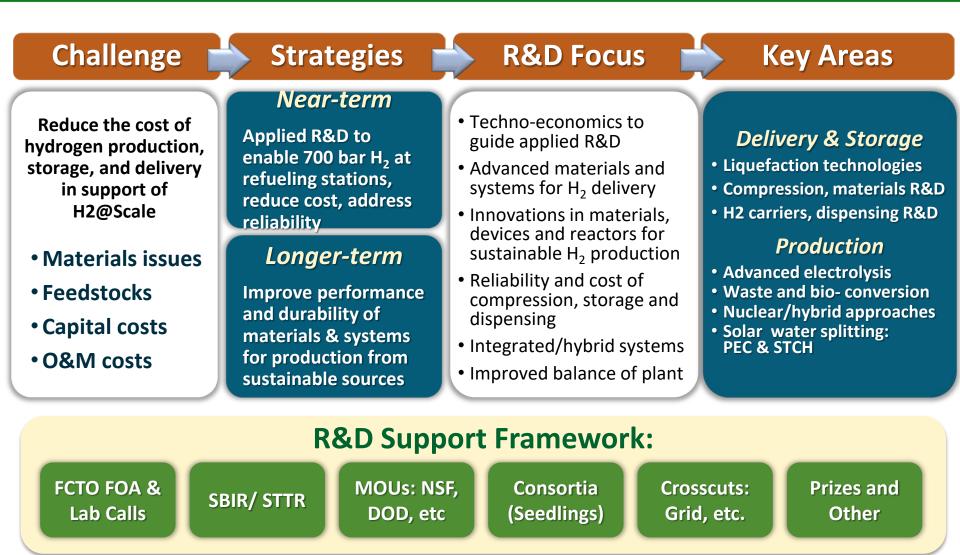
650 W/kg


System

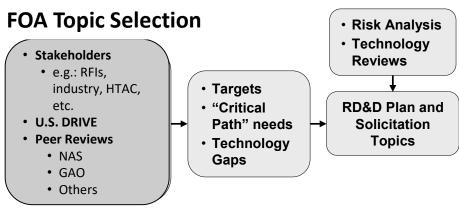
Hydrogen fuel cost vs. targets


Hydrogen Storage and Delivery Costs

Hydrogen is currently stored in Composite Overwrapped Pressure Vessels at 700 bar (~10,000 psig) for LDVs


Delivery Cost by Component

Tube Trailer Delivery Example

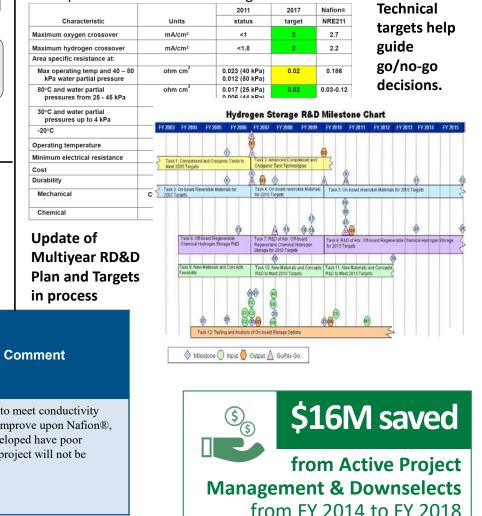


https://www.hydrogen.energy.gov/pdfs/15013_onboard_storage_performance_cost.pdf

Key Strategies and Focus Areas- Examples

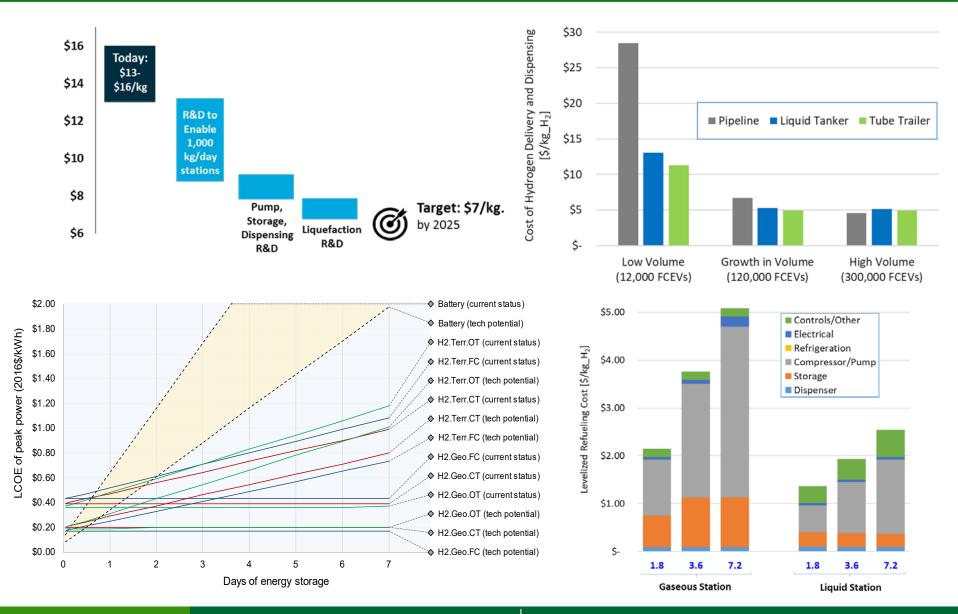
Program Management - Examples

Project & Program Review Processes


- Annual Merit Review & Peer Evaluation meetings
- Tech Team reviews (monthly)
- Other peer reviews- National Academies, GAO, etc.
- DOE quarterly reviews and progress reports

Project Number	Project Title PI Name & Organization	Final Score	Continue	Discontinue	Other	Summary Comment
123	New Polymer/ Inorganic Proton Conductive Composite Membranes for PEMFC	2.1		x		The project was unable to meet conductivity targets or significantly improve upon Nafion®, and the membranes developed have poor chemical stability. The project will not be continued.

Reviewer comments for projects posted online annually. Projects discontinued/ work scope altered based on performance & likelihood of meeting goals.

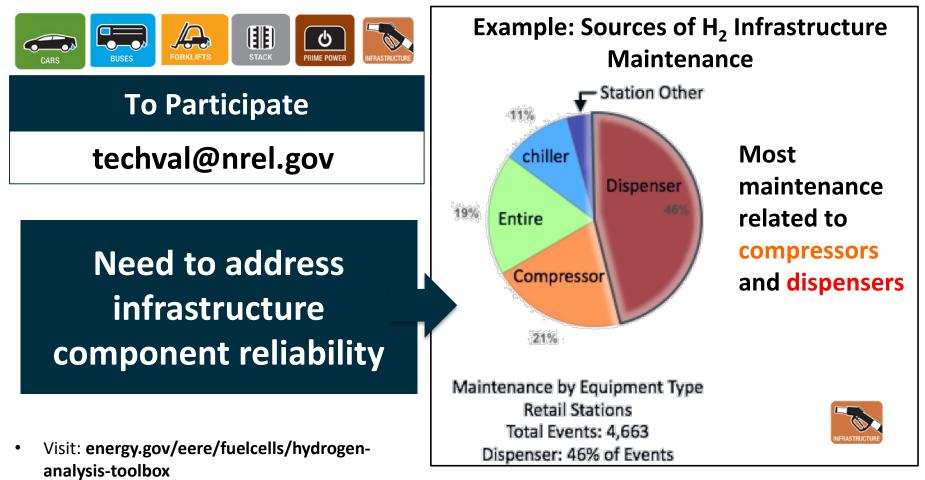

Technical Targets and Program Plans

Example Fuel Cell Membrane Targets

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Examples of Analysis Activities

Compatibility of Delivery & Storage Options

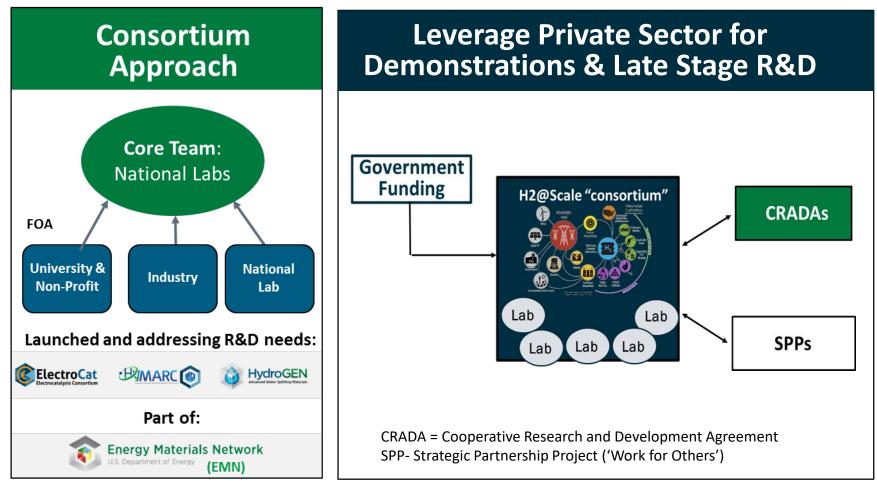

		Storage Options						
		700 Bar	Cold- compressed	Cryo- compressed	Cryo-sorbent	Near RT- sorbent	Metal Hydride	
ons	Gaseous (Tube Trailer or Pipeline)	\checkmark				\checkmark	✓	
Delivery Options	Liquid Trailer	√	\checkmark	\checkmark	\checkmark	✓	✓	
	Cold Gas tube Trailer	\checkmark	\checkmark		\checkmark	\checkmark	✓	
	H ₂ Carrier	\checkmark				×	✓	
For	recourt Implications	Pre-cooling (-40 °C)	Refrigeration (down to 150 K)	Supercritical H ₂ (<< 150 K); requires high utilization to prevent boil-off	Liq H ₂ or liq N ₂ needed (down to 80 K) w/ recirculation	Pre- cooling; Heat rejection at forecourt	Heat rejection at forecourt	

Decisions on H₂ delivery method and onboard storage technology can create limitations on the available choice for the other

Goal is to Optimize Both in Unison

Issues Arising from H₂ Infrastructure Data Collection

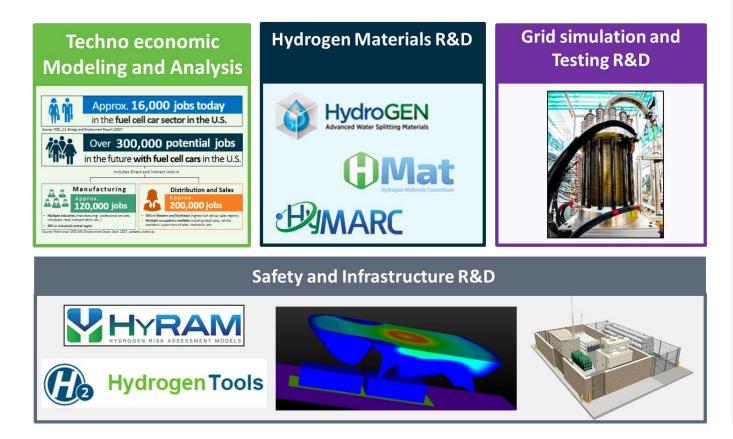
Through NREL's National Fuel Cell Technology Evaluation Center



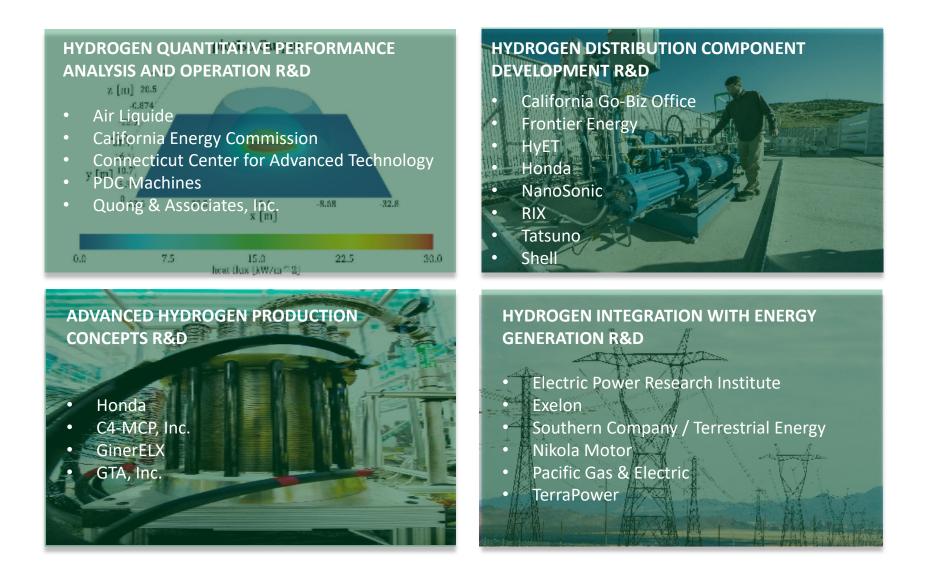
Source: U.S. DOE Fuel Cell Technologies Office

Program Strategy

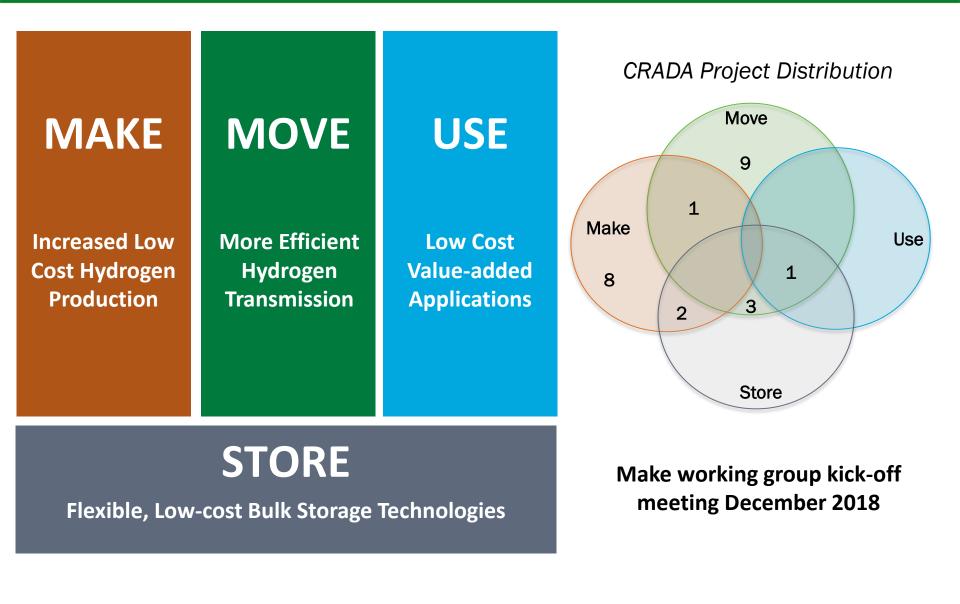
Use Energy Materials Network (EMN) National Lab capabilities to accelerate innovation and address key technical challenges


Bring in new industry and university players on an ongoing basis

Solicited Industry on Challenges and Needs

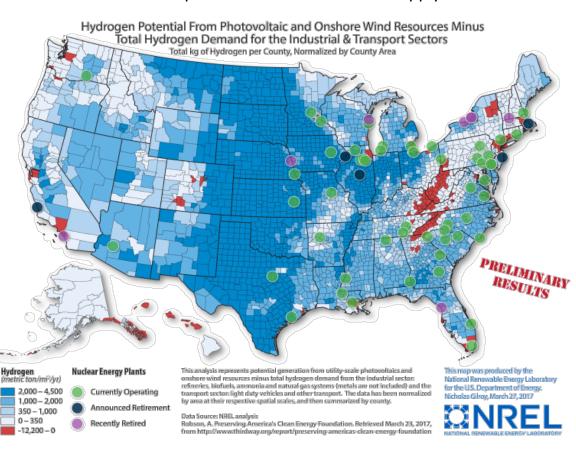

DOE held numerous workshops and issued requests on areas requiring assistance:

H2@Scale R&D Lab Capabilities- Examples

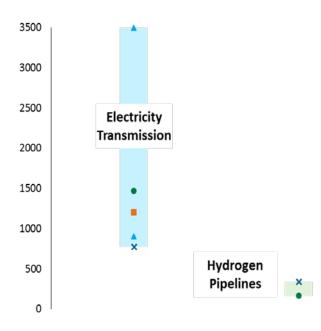


Over 20 new CRADA projects initiated between industry and national labs

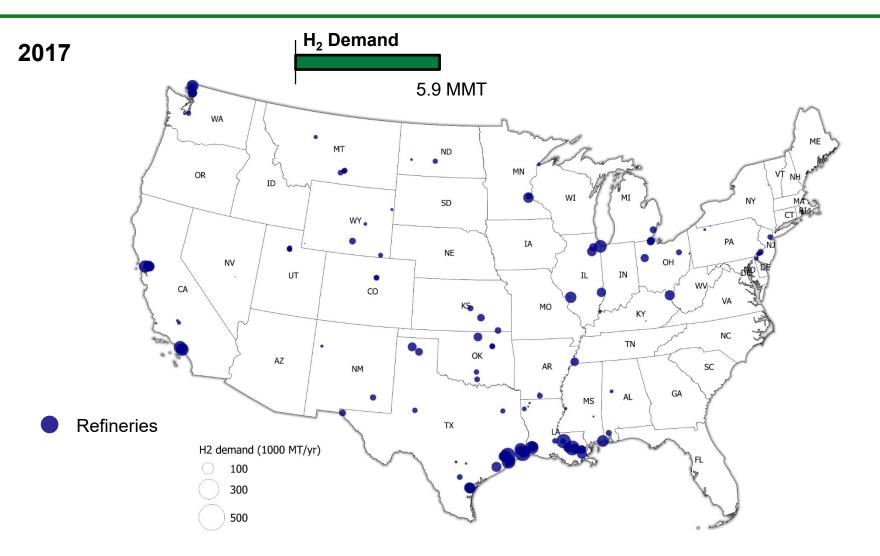
Current H₂@Scale CRADA Projects


Key focus areas to realize the H₂@Scale vision

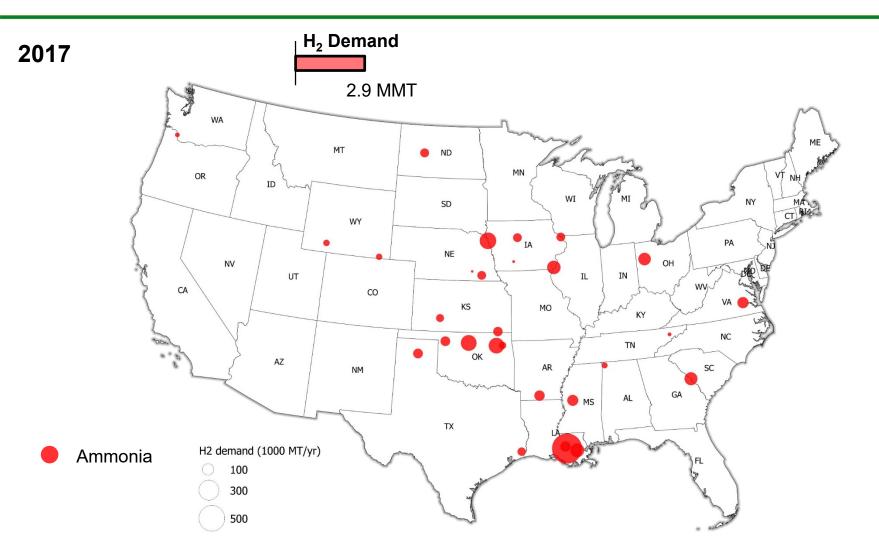
H₂@Scale: Nationwide Resource Assessment


Assessing resource availability. Most regions have sufficient resources.

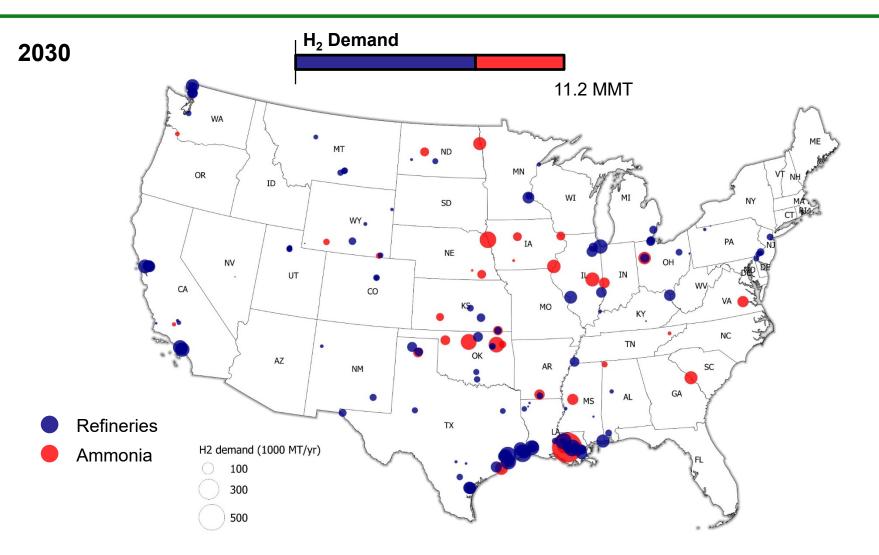
Red: Only regions where projected industrial & transportation demand exceeds supply.

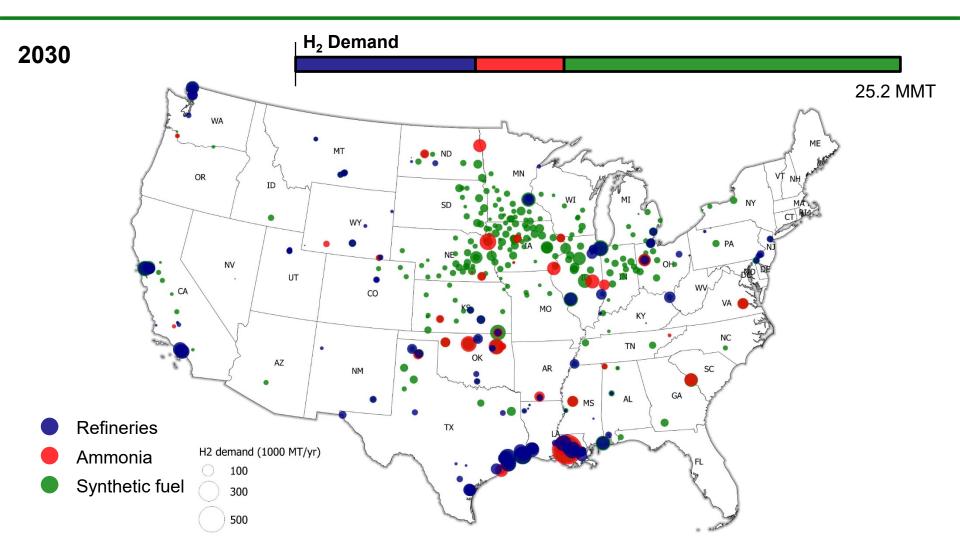

Assessing cost of H₂ vs electricity transmission

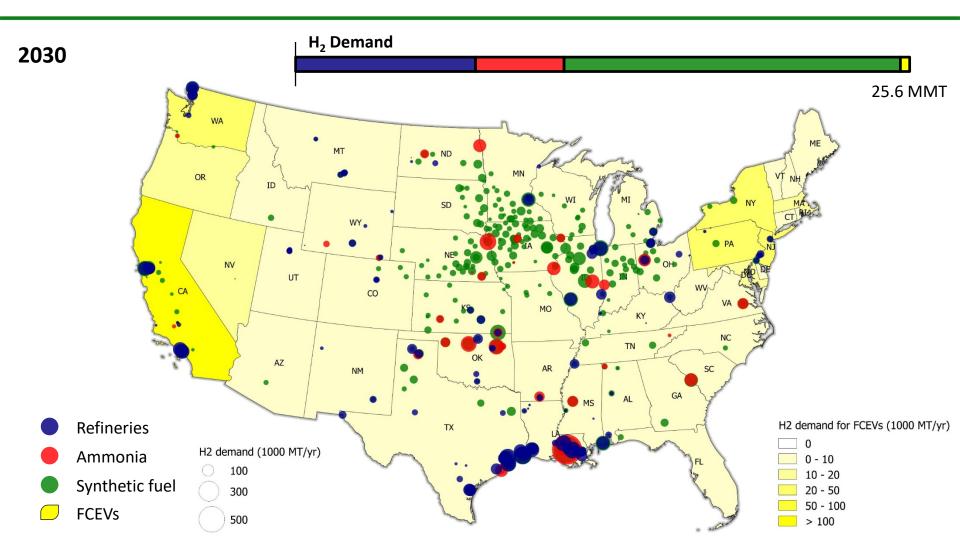
(in process)



\$/MW-mile Transmission Costs


Refineries: Where is the H₂ demand today?


Ammonia: Where is the H₂ demand today?


Ammonia & Refineries and Potential H₂ Demand

Plus demand from synthetic fuel production...

Hydrogen Demand Potential

Nearly 30 million metric tons of potential hydrogen demand in the U.S. Source: Elgowainy, et al, ANL

IPHE: International Partnership for Hydrogen and Fuel Cells in the Economy

- **Increase** international **collaboration to accelerate** progress
- Working Groups:

U.S. DEPARTMENT OF ENERGY

- **Regulations, Codes and Standards, Safety**
- **Education & Outreach** ۲

Launched 2003 and includes 18 countries and the European Commission **Coordination with IEA, Mission Innovation, and Energy Ministerials**

FUEL CELL TECHNOLOGIES OFFICE

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

U.S. elected

Chair May

2018

Japan Vice Chair

EC, Germany, France, **Canada support**

Commitment from Ministers on H₂ and Fuel Cells

The U.S. Deputy Secretary of U.S. Dept. of Energy attended the Hydrogen Ministerial Meeting in Tokyo on Oct 23

Tokyo Statement 4 areas for collaboration

- Harmonization of regulation, codes and standards
- Information sharing on safety and infrastructure
- Technical studies
- Communication, education and outreach

Hydrogen Energy Ministerial Priorities: Summary

Action from Oct 23, 2018 Hydrogen Ministerial: Develop concrete actions that Agencies can undertake to address four priorities

Harmonization of	Information Sharing,	Studies and Evaluations	Communication and
Codes and Standards	Safety, Infr. Supply Chain	of Impact Potential	Outreach
 Coordinate with industry to enable harmonization of relevant regulations, codes and standards such as those for: refueling stations, heavy duty transportation, energy storage technologies supporting sectoral integration, maritime other 	 Collaborate on relevant infrastructure R&D Share safety lessons learned, best practices on hydrogen safety Collaborate on R&D of risk assessment and mitigation to enable the safe and sustainable use of hydrogen technologies across applications. 	 Collect, analyze and share data and conduct studies Assess impact potential for sustainable production of H2 across pathways Develop business cases and models across value chain and integrated systems analysis across scenarios 	 Work together to promote appropriate outreach and awareness programs and initiatives to educate a broad range of stakeholder groups on H2 and fuel cell technologies Develop 'train the trainer' programs, to build awareness of hydrogen solutions, especially on safety

HTAC Recommendations Being Addressed

Recently Published: Sixth Biennial Report to Congress responding to HTAC Findings and Recommendations from FY16 – FY17				
Recommendation Actions Taken Since Last Meeting (Examples)				
Ensuring positive retail hydrogen fueling experience	 Issued RFIs on regulatory barriers to H₂ infrastructure and H2@scale 			
Continue efforts in material and process integration and technology acceleration in order to meet the 2020 EPACT Title VIII goals	 Launched H-Mat consortium to focus on materials compatibility with hydrogen Funded over 20 projects to enable H2@scale (\$11M total including cost share) 			
Maximize the role of the Hydrogen Safety Panel (HSP)	• Spearheaded formation of the Center for Hydrogen Safety (CHS) to provide the hydrogen and fuel cell industries and its stakeholders with hydrogen safety guidance (Direct HTAC output).			
Leverage the capabilities of public-private partnerships	 Participated in hydrogen fuel R&D workshop with Industry and National Labs to foster collaboration and identify R&D gaps 			
Identify and support other federal and state agencies	 Signed DOD TARDEC MOU to H₂ and fuel cell applications for military and civilian use 			

HTAC Impact – Examples

- HTAC Annual Reports and Letters to DOE Secretary
 - 2007 to 2017
- Subcommittee Outputs
 - Hydrogen Safety & Event Response (2017)
 - Communication & Outreach (2017)
 - Manufacturing (2014)
- Other Examples
 - Input on Hydrogen Safety Panel and affiliation with AIChE
 - Input on H-Prize 1st commercial system exported to Japan, manufactured in the US
 - Peer review of H₂ cost target *published*
 - Input on R&D Plan
 - H2@Scale

Potential Areas of Input by HTAC

• Plans and Roadmaps

- Program Plan (see next slide for brief update)
- 2020 infrastructure goals in EPACT and Program Plan
- Collaboration Examples
 - Tokyo Statement areas of collaboration and IPHE role
 - MOUs and concrete collaboration opportunities (e.g. TARDEC-FCTO MOU)
 - Center for Hydrogen Safety (see next slide and tomorrow's presentation at HTAC)
 - Prize concepts

Example of HTAC Impact: Expanding Safety Collaborations

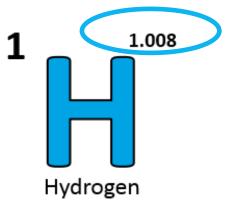
200 industry members- access to 110 countries & 60,000 members

Direct result of HTAC input and recommendations:

- Leverages private sector
- Expands impact of safety panel
- Transitions key areas to industry for sustainable business model
- Supports IPHE, Hydrogen Ministerial, etc.

Hydrogen and Fuel Cell Technologies Program Plan

 Tracking R&D Impact (e.g. patents)


41

Stakeholder Engagement to support early stage R&D

Celebrate Hydrogen & Fuel Cell Day October 8 or 10/8

Use Safety Information and Training Resources

Attend the 2019 Annual Merit Review

H2tools.org

INCREASE YOUR

Download for free at: <u>energy.gov/eere/fuelcells/downloads/</u> <u>increase-your-h2iq-training-resource</u> April 29 – May 1 Crystal City, VA www.hydrogen.energy.gov

Includes participation from other federal agencies working on hydrogen and fuel cell technologies

Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells

Examples of Recent DOE Engagement

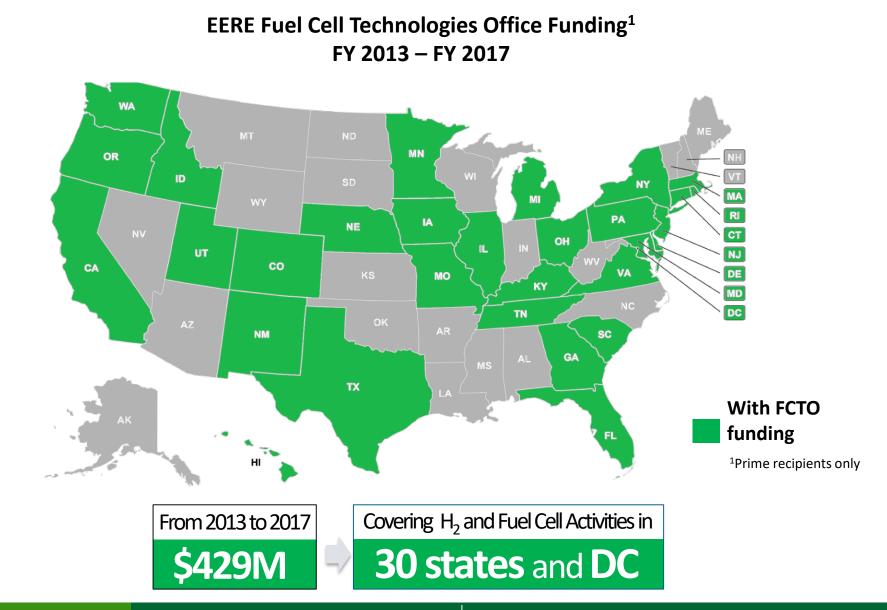
Driving a fuel cell car blog by Under Secretary of Energy Menezes

Sent to 20,000 people in distribution list

Reached 3,000 people through various outreach events

Reached over 30 different DOE offices

Thank You &


Additional Information

Dr. Sunita Satyapal

Director Fuel Cell Technologies Office <u>Sunita.Satyapal@ee.doe.gov</u>

energy.gov/eere/fuelcells

DOE activities cover many states across the U.S.

House	Senate	Conference
[No direction.]	The Committee recommends \$19,000,000 for Technology Acceleration activities, including \$3,000,000 for manufacturing R&D, and \$7,000,000 for industry-led efforts to demonstrate a hydrogen- focused integrated renewable energy production, storage, and transportation fuel distribution/retailing system. Regular consultation with industry is encouraged to avoid duplication of private-sector activities. The Committee encourages the Secretary to work with the Secretary of Transportation and industry on coordinating efforts to deploy hydrogen fueling infrastructure.	Within available funds, the agreement provides \$21,000,000 for Technology Acceleration activities, including \$3,000,000 for manufacturing research and development and \$7,000,000 for industry-led efforts to demonstrate a hydrogen-focused integrated renewable energy production, storage, and transportation fuel distribution/retailing system. [Senate language stands.]

House	Senate	Conference
Within available funds, \$2,000,000 is for the EERE share of the integrated hybrid	\$39,000,000 for Hydrogen Fuel R&D for efforts to reduce the cost and improve the performance of hydrogen generation and storage systems, hydrogen	\$39,000,000 for Hydrogen Fuel Research and Development
energy systems work with the Office of Nuclear Energy.	measurement devices for fueling stations, hydrogen compressor components, and hydrogen station	[Senate language stands.]
\$7,000,000 is to enable integrated energy systems using	dispensing components.	Within available funds, the agreement provides \$4,000,000 for the EERE share of the
high and low temperature electrolyzers with the intent of advancing the H2@Scale concept.	The Department shall continue to research novel onboard hydrogen tank systems, as well as trailer delivery systems to reduce cost of delivered hydrogen.	integrated energy systems work with the Office of Nuclear Energy
	directed to support R&D activities that reduce the use of platinum group metals, provide improvements in electrodes and membranes and balance-of-plant components and systems.	\$7,000,000 to enable integrated energy systems using high and low temperature electrolyzers with the intent of advancing the
	is directed to continue the H2@Scale Initiative, which couples current research efforts within the program with new opportunities for using hydrogen to provide grid resiliency and advance a wide range of industrial processes for the production of fuels, chemicals, and materials.	H2@Scale concept.

House	Senate	Conference
The Committee recognizes the need to support the development of alternative fueling infrastructure for U.S. consumers. Accordingly, the Department is encouraged to collaborate with the National Institute of Standards and Technology to allow accurate measurement of hydrogen at fueling stations.	The Committee further recommends \$7,000,000 for Safety, Codes, and Standards to maintain a robust program and engage regulatory and code officials to support their technical needs relative to infrastructure and vehicle safety.	\$7,000,000 for Safety, Codes, and Standards. [House language stands. "Encouraged" is not considered congressional direction.]
The Department is encouraged to work with the Department of Transportation on coordinating supporting hydrogen fueling infrastructure.	Within the amounts recommended, \$19,000,000 is recommended for Hydrogen Infrastructure R&D.	[Senate & House language stands. In both cases, 'encouraged' and 'recommended' are not considered congressional direction]

House	Senate	Conference
The Committee recognizes the progress of the program and continues support for stationary, vehicle, motive, and portable power applications of this technology.	[No direction.]	[House language stands. "Recognizes" is not considered congressional direction.]
[No direction.]	The Committee recommends \$1,000,000 for Systems Analysis, including research on in-situ metrology for process control systems for manufacturing of key hydrogen system components.	[Senate language stands. "recommends" is not considered congressional direction.]

Example of HTAC "Dashboard" Recommendation

		EPACT 2005, Title VIII – HTAC Review Responsibilities						
		DOE Hydrogen	Technology Consequences			Energy Secretary Coordinated Plan ⁱ for Hydrogen & Fuel Cells – Potential to Achieve Section 805 Program Goals		
Technology Areas		& Fuel Cell	Safety	Economics	Environment	Vehicles ⁱⁱ	Hydrogen Energy and Energy Infrastructure ⁱⁱⁱ	Fuel Cells ^{iv}
Hydrogen		<u> </u>				I		1
Production	Fossil Fuels, Hydrogen Carrier Fuels Renewables, Nuclear							
Delivery	Transmission by Pipelines, Surface Transport; Fueling (Central Refueling Stations, Distributed Onsite)							
Uses	Commercial, Industrial & Residential Power Generation							
Advanced Vehicle Technologies	Engine & Emission Control Systems, Energy Storage, Electric Propulsion, Hybrid Systems, Automotive Materials, Other							
Storage	Hydrogen & Hydrogen Carrier Fuels, Development of Materials for Storage in Gas, Liquid or Solid Form at Refueling Facilities and On-Board Vehicles							
Fuel Cells				1	1		1	
Power Systems	Safe, Durable, Affordable, Efficient, Fuel Flexible							
Hybrid Technologies	U.S. Produced, Commercially Available, Competitive							
Manufacturing	High Temperature Membranes, Cost Effective Stack & System Reliability,							

Program Impact on Hydrogen Delivery R&D - Example

"The DOE's contribution and support of the EERE and FCTO's testing and development of ASME B31.12 code gives operators and engineers the basis for employing FRP in spools, or in our case, site manufactured FRP in very long lengths. We appreciate all the hard work and dedication from the DOE team that has brought this project to such a successful conclusion."

- Gary Littlestar, CEO of Smart-Pipe Technologies

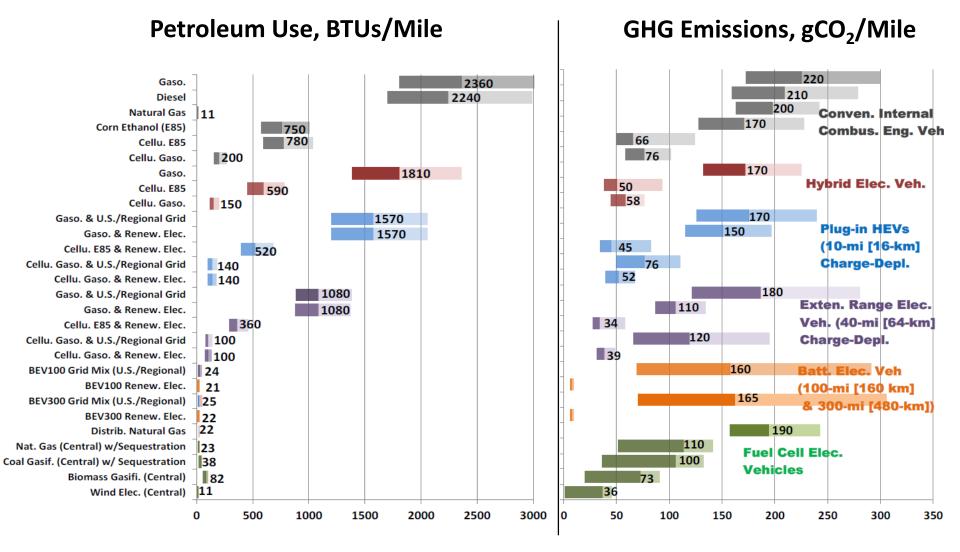
Continued Applied R&D Needs

- New materials for H₂ service
- Non-mechanical FRP joints
- Weld performance for higher strength (X100) pipeline steel in H₂
- Advanced liquid transport technologies

Vehicular Transport

Pipeline Delivery

Inclusion of FRP in ASME B31.12 Hydrogen Piping and Pipelines code, lowering cost of high-pressure transmission pipelines by ~25%. (SRNL)



Reduction of material performance factors for X70 steel in ASME B31.12 code, lowering cost of hydrogen pipelines construction by up to 30%. (SNL) Reduction of cost of hydrogen tube trailers by > 20% from 2011 baseline, while increasing capacity by > 40%. (Hexagon Lincoln)

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE

Well-to-Wheels Analysis: Petroleum Use and Emissions

Program Record #13005: http://www.hydrogen.energy.gov/pdfs/13005_well_to_wheels_ghg_oil_ldvs.pdf

Cross-Office Updates

The H₂ and Fuel Cells Program spans other DOE offices

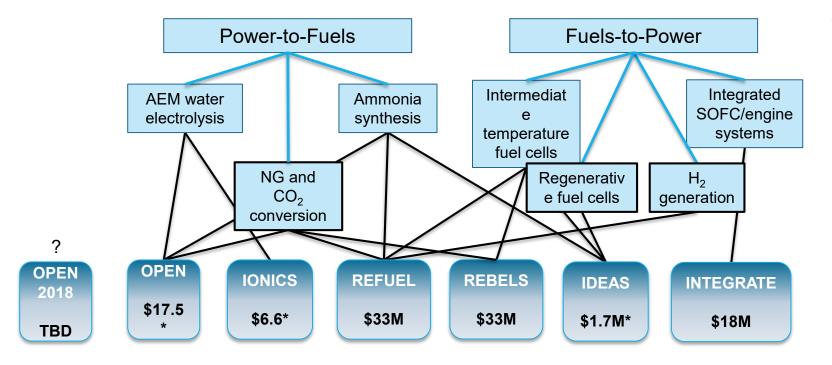
- FY 2018 Hydrogen and Fuel Cell crosscut spending level was approximately \$19M
- Current solicitations are our "open" core FOA, Computational Materials Science and EPSCoR (<u>https://science.energy.gov/bes/funding-opportunities/</u>)
- BES coordinates with other DOE Offices through the internal working group, and with other Government Agencies through participation in the Interagency Working Group
- 2017 Basic Research Needs workshop on Catalysis Science report is available online. No upcoming workshops directly related to hydrogen or fuel cells.

ARPA-E Programs in Fuel Cells/Electrolyzers for Energy Conversion and Storage

Mission

Develop new disruptive technologies for efficient, cost-effective electrical storage and generation systems using renewable energy and natural gas with applications for transportation, commercial and industrial power customers across the economy, resulting in increased energy efficiency and security, significant fuel and energy savings, and emissions reduction

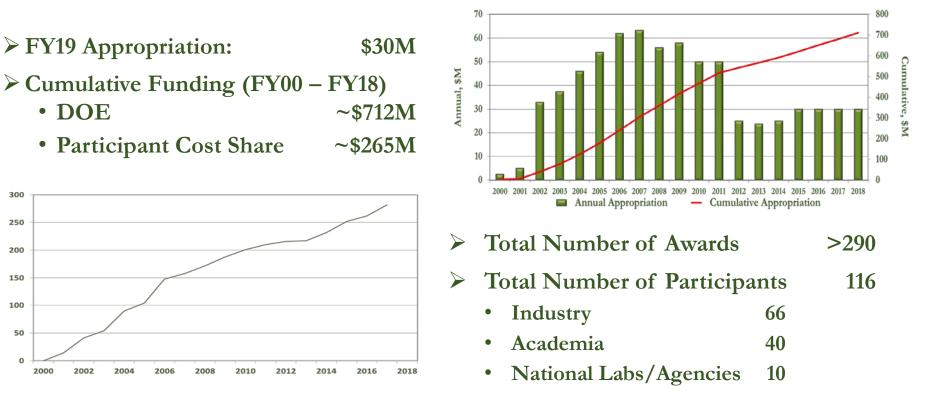
Drivers


- Growth of intermittent renewable energy, cheap and abundant natural gas
- · Need for increased efficiency throughout the whole economy
- Increased demand for clean/electrified transportation
- Growth of microgrids and distributed energy generation

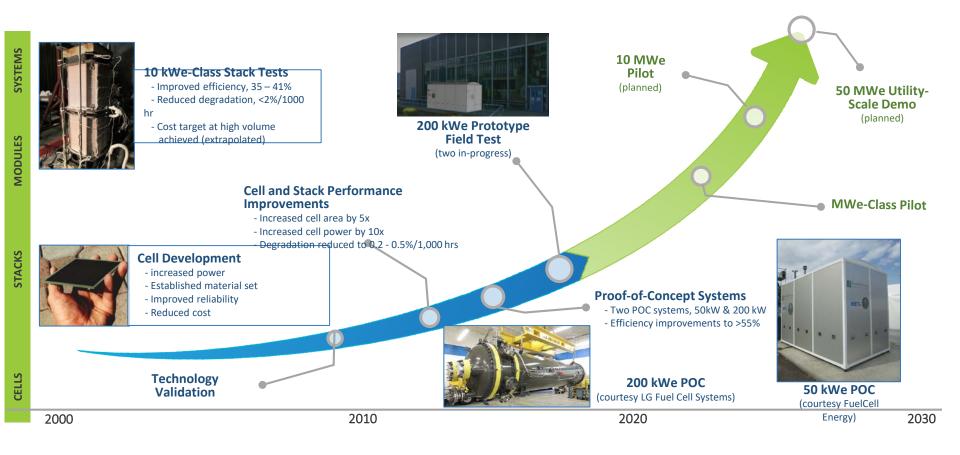
Coordination and cooperation with other DOE offices (FCTO, FE)

- Program development (workshops, common technical targets)
- Project evaluation (proposal reviewing, annual program reviews)
- Constant coordination via Fuel Cell and Hydrogen working group

ARPA-E Programs in Fuel Cells/Electrolyzers for Energy Conversion and Storage


* - related to FC/electrolyzers/H₂

Cumulative Number of Projects


SOFC Program Funding History

SOFC Program How the technology has evolved

Cross-Office Activities Update

- Solar Fuels Research Initiative Strategic Plan
 - Addressed in FY 2019 congressional language

"The Committee directs the Department of Energy to submit a solar fuels research initiative strategic plan within 120 days after enactment of this act. The 10-year plan shall include **research challenges and opportunities**, **program goals and milestones to overcome scientific and technological impediments**, a description of **coordination between the Office of Science**, **EERE**, and ARPA-E to leverage basic research and early-stage translational research in solar fuels to accelerate the pace of innovation, an assessment of U.S. leadership in solar fuels research relative to international competition and the extent to which the Department's investments are sufficient to maintain U.S. leadership."

- Basic Energy Sciences leading
- Solar, ARPA-E and Fuel Cell Tech Offices contributing