

Fuel Cell Technologies Office Update

Dr. Sunita Satyapal, Director - Fuel Cell Technologies Office

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Meeting

Washington, DC- Feb 13, 2018

Overview

- HTAC Scope
 - Membership
 - Energy Policy Act (EPACT) 2005 Title VIII
- Program History and Updates
- Next Steps
 - Examples of outputs and recommendations

2018 HTAC Membership

HTAC Member and Affiliation	Expertise
Ayers, Katherine	Hydrogen
Proton OnSite	Production
Troton onsite	Companies
Azevedo, Ines	Behavioral/
Co-Director of the Climate and Energy Decision	Decision making
Making Center, Carnegie Mellon University	Science
Clay, Kathryn	Natural Gas
American Gas Association	Industry
Afficial das Association	Association
Dunwoody, Catherine	Clean Air
California Air Resources Board	Regulation
Eggert, Anthony	Environmental
Program Director, Climateworks	Policy Analysis
Freese, Charles F. (Chair)	Automotive
General Motors Company	Companies
Koyama, Harol	Stationary Power
H2 PowerTech	and Markets
Leggett, Paul	Venture Capital /
Morgan Stanley, Investment Banking Division	Investment
Lipman, Timothy	
Transportation Sustainability Research Center, UC	Clean Power
Berkeley; Director, DOE Pacific Region Clean	Technologies
Energy Application Center	

HTAC Member Name and Affiliation	Expertise
Mannan, M. Sam Regents Professor of Chemical Engineering, Texas A&M University; Executive Director, Mary Kay O'Connor Process Safety Center	Safety, Codes and Standards
Markowitz, Morry Fuel Cell and Hydrogen Energy Association (FCHEA)	Hydrogen and Fuel Cells Industry Association
Mizroch, John Managing Member, John F Mizroch, LLC	Clean Energy Technology Exports and Investments
Nocera, Daniel Professor, Chemistry and Chemical Biology, Harvard University	Hydrogen Production R&D
Novachek, Frank Xcel Energy	Utilities (Electricity and Natural Gas)
Powell, Joseph Chief Scientist, Shell Global Solutions	Fuels Production and R&D
Ratcliff, Adele Director, Manufacturing Technology Office of the Deputy Assistant Secretary of Defense	Federal Gov't/ Manufacturing Technology R&D
Scott, Janea California Energy Commission	State Energy Policies and Regulations
Thompson, Levi University of Michigan	Physical Sciences

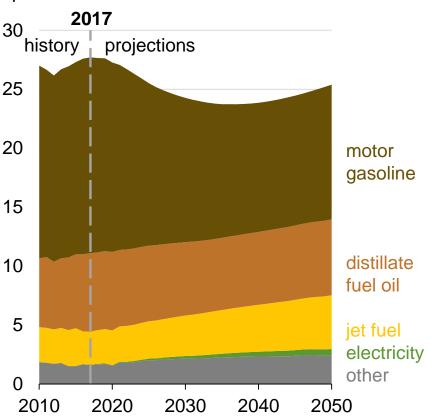
Indicates new members as of January 2018

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Scope

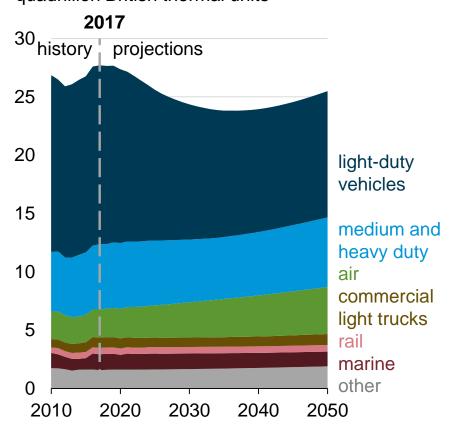
To advise the Secretary of Energy on:

1. The implementation of programs and activities under Title VIII of EPACT

- 2. The safety, economical, and environmental consequences of technologies to produce, distribute, deliver, store or use hydrogen energy and fuel cells
- 3. The DOE Hydrogen & Fuel Cells Program Plan

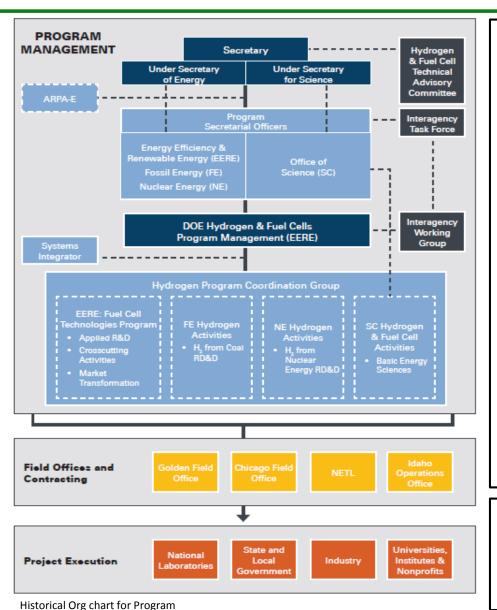

Title VIII Sec. 802- Purposes

- 1. Enable and promote comprehensive development, **demonstration**, and **commercialization** of H₂ and fuel cells with industry
- Make **critical public investments** in building strong links to private industry, universities and National Labs to expand innovation and industrial growth
- Build a mature H₂ economy for **fuel diversity** in the U.S.
- Decrease the **dependency on foreign oil & emissions** and enhance energy security
- Create, strengthen, and protect a sustainable national energy economy


Primary focus light duty vehicles

Over 90% of transportation sector relies on petroleum

Transportation sector consumption by fuel type quadrillion British thermal units



Energy consumption by travel mode quadrillion British thermal units

Source: DOE EIA Annual Energy Outlook 2018

Overall Hydrogen and Fuel Cells Program Organization

U.S. DEPARTMENT OF ENERGY

History:

- Hydrogen and Fuel **Cells Program: Includes** EERE, FE, NE and SC. Led by EERE since 2004; started coordination with ARPA-E after its creation
- Monthly coordination and integrated strategic plan (update underway)
- **Interagency Working Group** (~ 10 Agencies) meets monthly (led by EERE FCTO)

Program
Funding –
FY 2017:

EERE	\$101M
NE	\$2M
BES	\$22M
FE	\$30M
ARPA-E	\$40M*

Total: ~\$195M

*Includes funding in coordination with FCTO

Funded in the last decade:

- ~ 110 companies
- ~ 100 universities & institutes
- 12 national labs

Rigorous Program Management - Examples

FOA Topic Selection Risk Analysis Technology **Stakeholders** Reviews • e.g.: RFIs, Targets industry, HTAC, etc. "Critical RD&D Plan and U.S. DRIVE Path" needs Solicitation Peer Reviews **Topics** Technology NAS Gaps GAO Others

Project & Program Review Processes

- Annual Merit Review & Peer Evaluation meetings
- Tech Team reviews (monthly)
- Other peer reviews- National Academies, GAO, etc.
- DOE quarterly reviews and progress reports

Project Number	Project Title PI Name & Organization	Final Score	Continue	Discontinue	Other	Summary Comment
123	New Polymer/ Inorganic Proton Conductive Composite Membranes for PEMFC	2.1		x		The project was unable to meet conductivity targets or significantly improve upon Nafion®, and the membranes developed have poor chemical stability. The project will not be continued.

Reviewer comments for projects posted online annually. Projects discontinued/ work scope altered based on performance & likelihood of meeting goals.

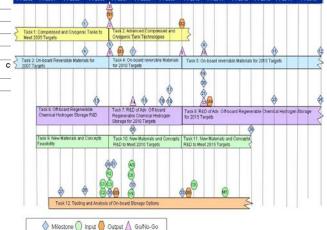
Technical Targets and Program Plans

Example Fuel Cell Membrane Targets

		2011	2017	Nafion®
Characteristic	Units	status	target	NRE211
Maximum oxygen crossover	mA/cm ²	<1	2	2.7
Maximum hydrogen crossover	mA/cm²	<1.8	2	2.2
Area specific resistance at:				
Max operating temp and 40 – 80 kPa water partial pressure	ohm cm²	0.023 (40 kPa) 0.012 (80 kPa)	0.02	0.186
80°C and water partial pressures from 25 - 45 kPa	ohm cm²	0.017 (25 kPa)	0.02	0.03-0.12
30°C and water partial		Hydrogen S	torage R8	D Milesto

Technical targets help guide go/no-go decisions.

Update of Multiyear RD&D Plan and Targets in process


pressures up to 4 kPa

Minimum electrical resistance

Durability

Mechanical

Chemical

\$18M saved

from Active Project
Management & Downselects
from FY 2013 to FY 2017

DOE EERE Funding – Impact Examples

Innovation

650 H₂ and fuel cell patents enabled by FCTO funds

Approx.

of H₂ and fuel cell patents

come from National Labs

Market Impact

More than

Technologies

commercialized by private industry

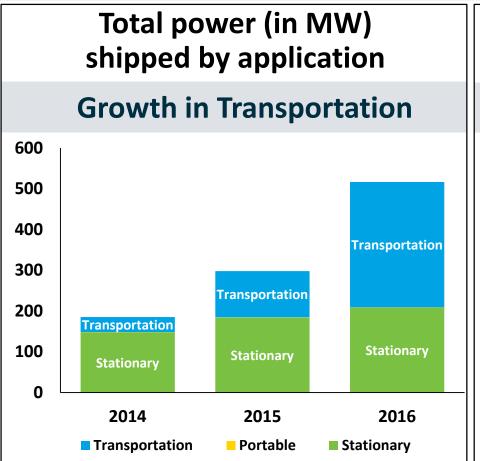
with potential

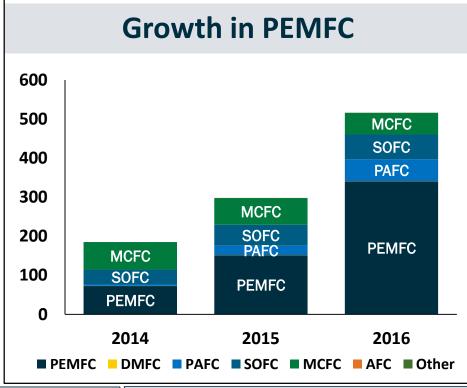
to be commercial in the next 3-5 years

can be traced back to FCTO R&D

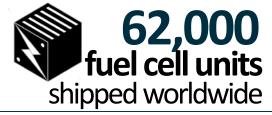
Examples of Progress enabled by DOE FCTO in the last decade

Reduced cost 60%


Quadrupled durability


R&D


Cut electrolyzer costs 80%


Significant Growth in the Fuel Cell Industry

Total power (in MW) shipped by fuel cell chemistry Growth in PEMEC

Source: DOE Fuel Cell Technologies Market Report. Available at: https://energy.gov/eere/fuelcells/market-analysis-reports

For the first time in history....

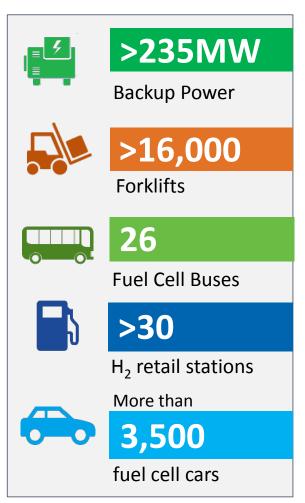
3,500 | sold or leased in the United States

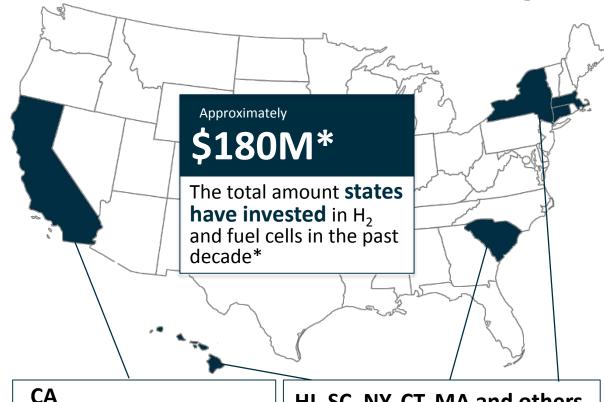
Commercial fuel cell electric cars are here

- No petroleum, no pollution
- **Refuels in minutes**
 - More than 360 mi driving range
 - Over 60 mpgge

More models coming soon...

Longer driving ranges, greater efficiencies, more space




Hydrogen and Fuel Cell Applications in the U.S.

U.S. Snapshot

U.S. DEPARTMENT OF ENERGY

Cumulative State Funding

- 200 stations planned
- Over 30 public stations open
- \$150M invested so far
- \$235M announced in 2018

HI, SC, NY, CT, MA and others

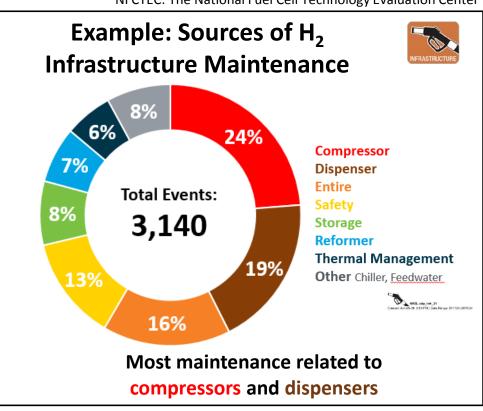
- \$27M invested so far
- 12-25 stations planned in the NE

^{*}Excludes recent announcement from CA to invest \$235M in electric vehicles

Central data collection helps guide further R&D

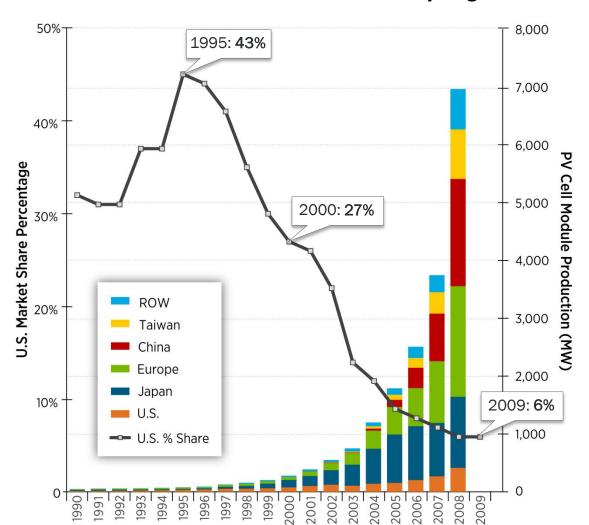
Data Validation of Real World Applications through the NREL's NFCTEC

Data products provide insights on technology improvements, issues and gaps

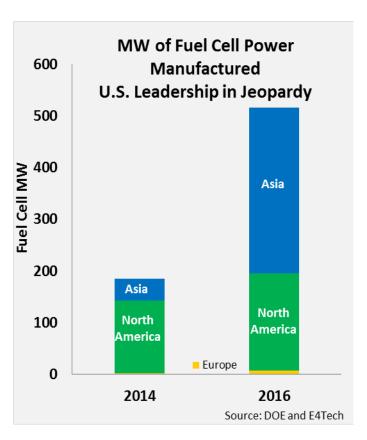

NFCTEC: The National Fuel Cell Technology Evaluation Center

To Participate

techval@nrel.gov

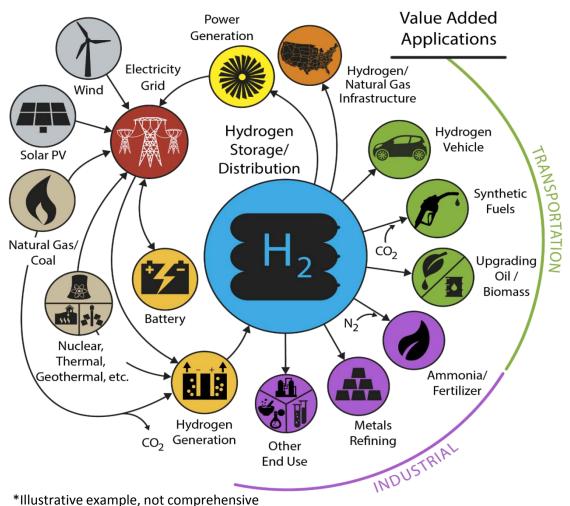

Models "Toolbox" Online

- Financial, technical and economic models covering H₂ infrastructure, jobs, and more.
- Visit:
 energy.gov/eere/fuelcells/hydrogen
 -analysis-toolbox



Challenges: Example from Solar Industry

Global & U.S. Annual PV Production by Region



What can we learn from other industries- solar, batteries?

H2@Scale Opportunity: Scale drives demand

H2@Scale Energy System

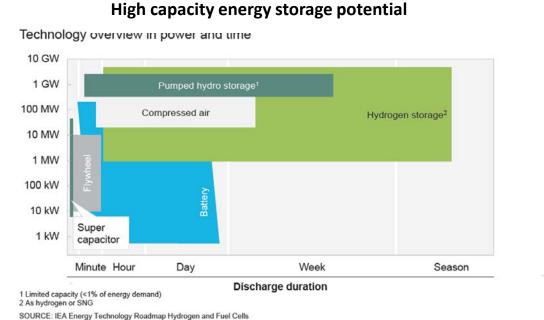
Source: NREL

What is "H2@Scale"?

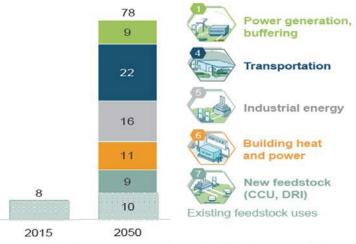
A 'Big Idea' concept developed through 14 National Labs

Enables H₂ across multiple sectors and resources: Industrial (e.g., petroleum refining, fertilizer production, steel manufacturing), transportation (vehicles, marine, rail, etc.), power generation (including coal, nuclear and renewables), as well as energy storage.

Impact Potential Estimated by Global Industry

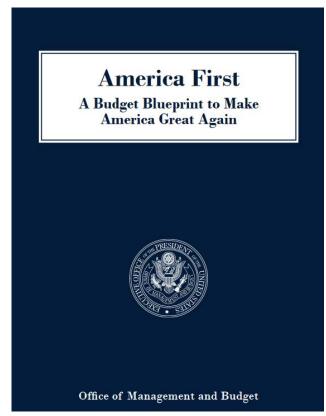

By 2050:

- \$2.5 trillion in global revenues
- 30 million jobs worldwide
- 400 million cars, 15-20 million trucks
- 18% of total global energy demand
- Potential for 10-fold increase in hydrogen demand


Source: Hydrogen Council (>20 companies with >\$10B for H₂)

Impact Potential & Alignment with Priorities

Hydrogen can enable use of diverse domestic resources and address priorities of energy security, energy storage, resiliency and economic prosperity. R&D is required. Aligns with national & DOE priorities.


"Agencies should invest in early-stage, innovative technologies that show promise in harnessing American energy resources safely and efficiently."

-Aug. 17, 2017 OMB/OSTP Memo

Global energy demand supplied with hydrogen, EJ

DOE Updates

- Former Governor of Texas Rick Perry sworn in as the Energy Secretary on March 2, 2017
- White House budget proposal released
 - "...reflects an increased reliance on the private sector to fund later-stage research, development, and commercialization of energy technologies..."
 - "... focuses resources toward earlystage research and development."

WH Budget Blueprint released on March 16, 2017

Hydrogen & Fuel Cells Budget (EERE FCTO)

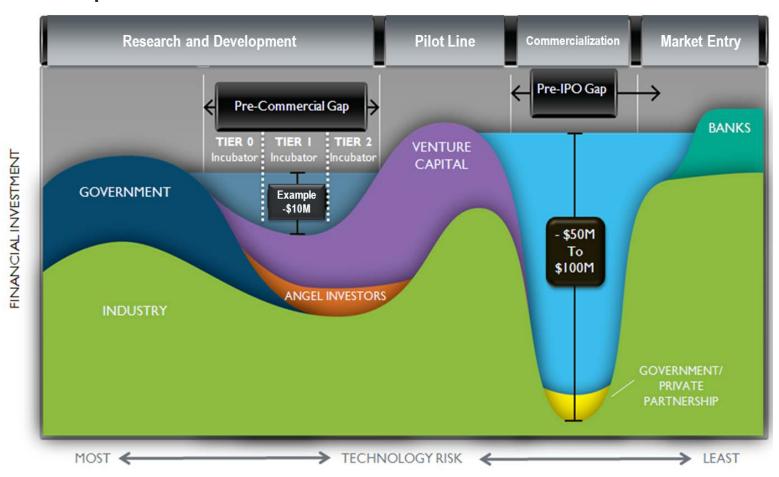
Stronger emphasis on early R&D and relying on industry for later stage R&D

	FY 2017	FY 2018				
Key Activity	(\$ in thousands)					
	Approp.	Request	House Mark	Senate Mark		
Fuel Cell R&D	32,000	15,000	No direction	27,000		
Hydrogen Fuel R&D ¹	41,000	29,000	No direction	36,000		
Systems Analysis	3,000	1,000	No direction	1,000		
Technology Acceleration	18,000					
Technology Validation	-	_	9,000 ²	14,000 ⁴		
Manufacturing R&D	-	-	3,000	14,000		
Market Transformation	-					
Safety, Codes and Standards	7,000	-	Direction ³	7,000		
Total	101,000	45,000	53,000	85,000		

¹Hydrogen Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D

²Specific language directing \$2M for integrated hybrid energy systems work with NE and \$7M for integrated energy systems using high and low temperature electrolyzers to advance H2@scale concept. ³To collaborate with NIST on accurate measurement at H2 refueling stations. ⁴\$3M for manufacturing R&D and \$7M for industry-led efforts to demonstrate a renewable hydrogen fueling stations.

FY18 House and Senate Language


Program Area	House	Senate
Fuel Cell R&D	The Committee recognizes the progress of the program and expresses continued support for stationary, vehicle, motive, and portable power applications of this technology.	Within the amounts recommended, \$27,000,000 is for Fuel Cell Research and Development.
H ₂ Fuel R&D	DOE is encouraged to explore technologies that advance storage and transportation fuel distribution, such as hydrogen compressors and carbon fiber tanks, and retail fueling systems. DOE is encouraged to work with the Department of Transportation on supporting hydrogen fueling infrastructure.	\$36,000,000 for Hydrogen Research and Development. The Committee encourages the Secretary to work with the Secretary of Transportation and industry on coordinating efforts to deploy hydrogen fueling infrastructure. The Department is further encouraged to identify competitive opportunities to help develop affordable H ₂ infrastructure components. The Department is directed to use funds to improve H ₂ measurement devices for retail fueling stations and work to reduce costs for H ₂ compressors and carbon fiber tanks.

FY18 House and Senate Language

Program Area	House	Senate
Systems Analysis	N/A	\$1,000,000 for systems analysis activities.
Safety, Codes and Standards	Committee recognizes the need to support the development of alternative fueling infrastructure for U.S. consumers. DOE is encouraged to collaborate with the National Institute of Standards and Technology to allow accurate measurement of hydrogen at fueling stations.	The Committee recommends \$7,000,000 for Safety, Codes, and Standards.
Technology Acceleration & Other Language	Within available funds, \$2,000,000 is for the EERE share of the integrated hybrid energy systems work with the Office of Nuclear Energy. \$7,000,000 to enable integrated energy systems using high and low temperature electrolyzers with the intent of advancing the H2@Scale concept.	The Committee recommends \$14,000,000 for Technology Acceleration activities, including \$3,000,000 for manufacturing research and development, and \$7,000,000 for industry-led efforts to demonstrate a hydrogen-focused integrated renewable energy production, storage, and transportation fuel distribution/retailing system.

Government vs. Private Sector Roles

Example— illustrative timeline for innovation & commercialization

Adapted from SunShot Incubator briefing. Pictorial example, not representative of all industry start ups

Program Focus, Work Areas and Approach

Early R&D Focus

Applied research, development and innovation in emerging hydrogen and fuel cell technologies leading to:

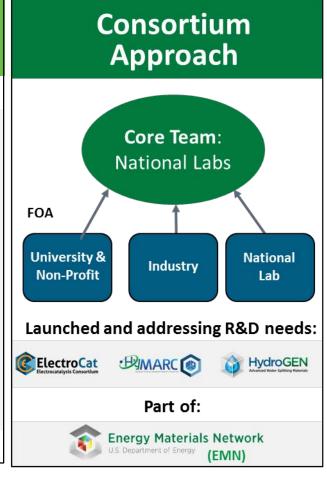
- Energy security
- Energy resiliency
- Strong domestic economy

Early R&D Areas

Fuel Cells

Hydrogen

- PGM- free catalysts
- Durable MEAs
- Electrode performance
- Production pathways
- Delivery components


 (i.e. compressors)
- Advanced materials for storage

PGM = Platinum group metals

MEA = Membrane Electrode Assembly

Status and **Targets** Fuel Cell H, Cost H, Storage Cost at Pump Cost \$16/gge to \$24/kWh \$180/kW \$12/gge \$50/kW 100K/vr \$17/kWh 100K/yr \$7.5/gge* \$15/kWh \$45/kW 500K/yr to \$5/gge** 500K/vr \$4/gge \$40/kW \$10/kWh 2025 targets High-vol. Low vol.

*Based on Electrolysis **Based on NG SMR

Note: Graphs not drawn to scale and are for illustration purposes only.

Lab Consortia to Address Key Materials R&D Challenges

Research Capabilities & Core Principles guiding EMN

Predictive Simulation Across Scales

Synthesis & Characterization

Rapid Screening End Use Performance

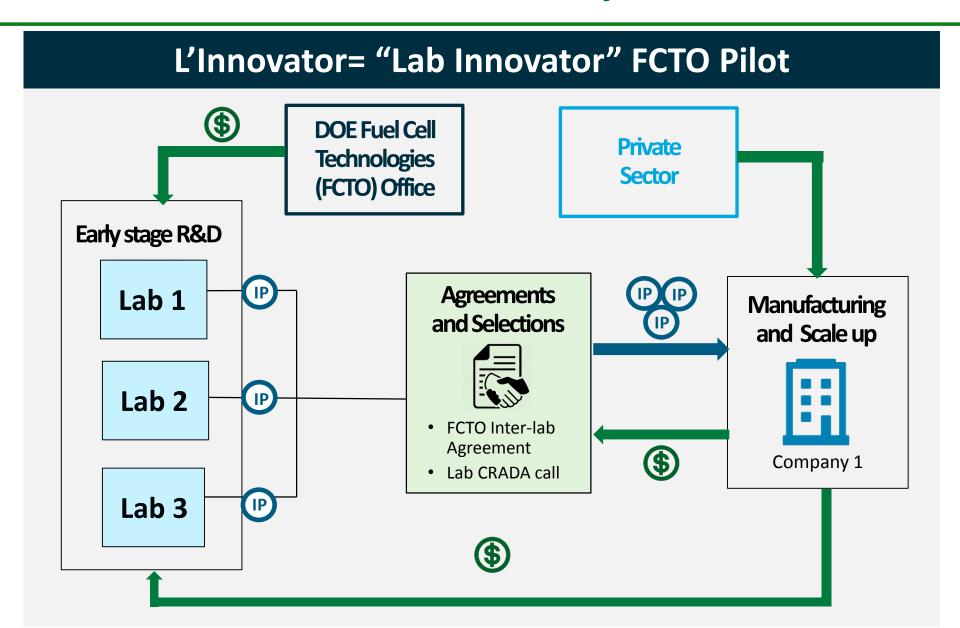
Process Scalability

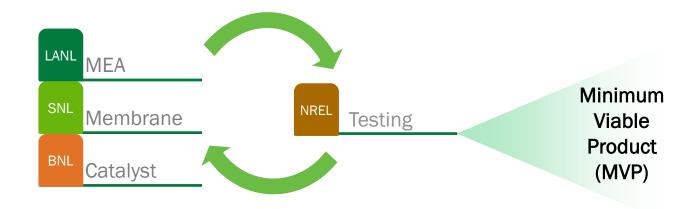
Process Control Real-time Characterization Reliability Validation

Data Management & Informatics

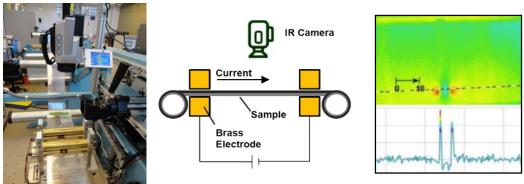
- Establishes world class materials capability network
- Sets up clear point of engagement through concierge
- Offers a streamlined access through standard agreements
- Encourages data and tools collaboration

Lab Consortia supporting EMN spanning multiple DOE offices and technologies



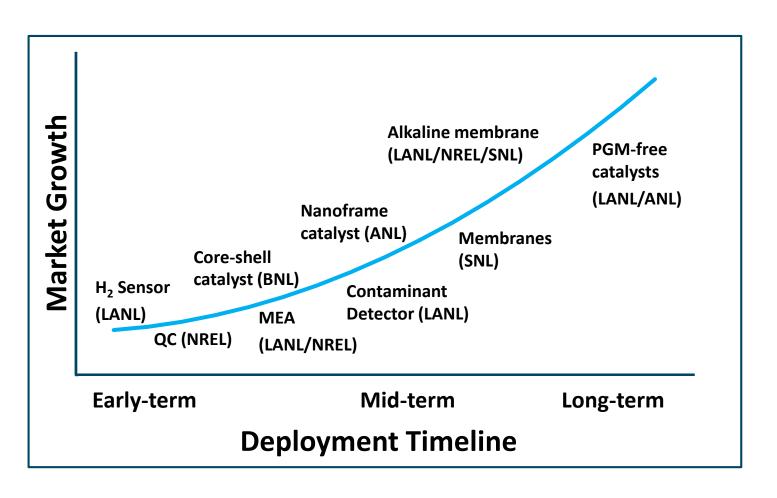


Innovations Provided to Industry & Investors

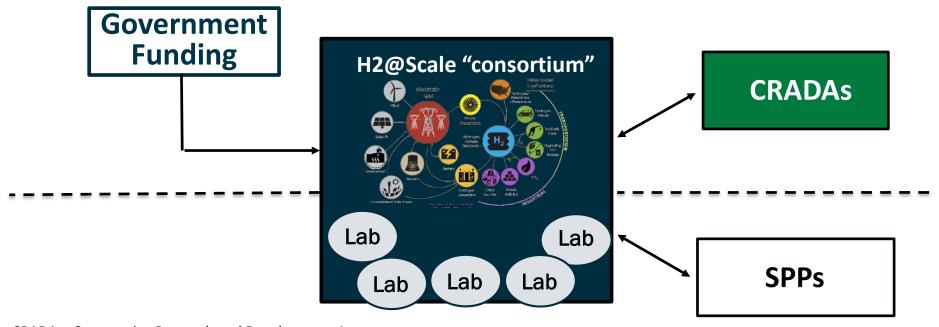


Example of L'Innovator Bundled IP

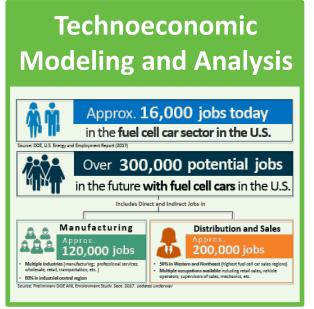
Bundled IP and Lab engagement offer greater value than conventional Tech Transfer approach by Labs. Accelerates development of MVP.

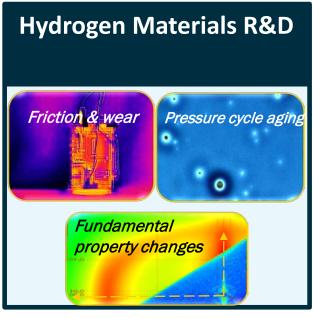


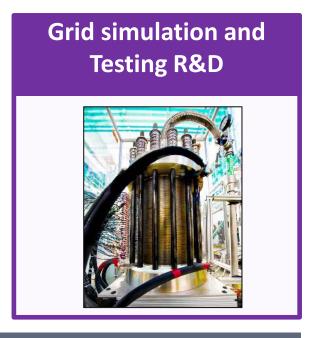
Example: Includes quality control method for use in electrode manufacturing


Examples of IP Topics by National Labs

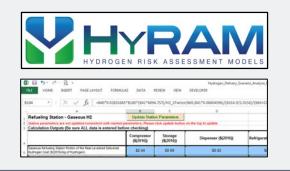
Labs do not commercialize technology. Focus is early R&D but need active engagement and partnership with private sector

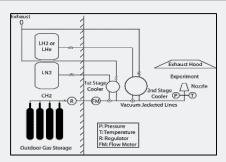

Leveraging for non-early stage R&D


- H2@Scale CRADA call: Leverages Lab capabilities and expertise to address challenges- materials R&D, analysis, safety R&D, etc.
- Round 1 in 2017. Future rounds planned in 2018, pending appropriations.



CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')


H2@Scale R&D Lab Capabilities— Examples



Safety and Infrastructure R&D

H2@Scale CRADA Call Partners and Working Groups

First round of Selections Include 25 Projects

H₂ Quantitative Analysis R&D

- Air Liquide
- California Energy Commission
- Connecticut Center for Advanced Technology
- **PDC Machines**
- Quong & Associates, Inc.

H₂ Production Concepts R&D

- AquaHydrex
- Honda
- C4-MCP, Inc.
- GinerFLX
- GTA, Inc.

Selections and subsequent working group assignments are subject to negotiation.

H₂ Integration with Energy Generation R&D

- Flectric Power Research Institute
- Exelon
- Southern Company / Terrestrial Energy
- Nikola Motor
- Pacific Gas & Electric
- **TerraPower**

H₂ Distribution Component R&D

- California Go-Biz Office
- Frontier Energy
- HyET
- Honda
- NanoSonic
- RIX
- **Tatsuno**

Complementing Retail Stations: H₂ Refuel H-Prize

The competition

The winning system

simple.fuel.™

DOE **\$1M** prize

Focuses on system for small-scale refueling

Authorized in **Energy Independence and Security Act**

More info: hydrogenprize.org

Designed by three-member team:

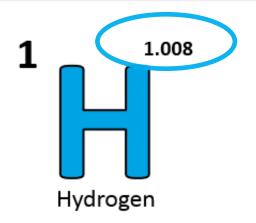
- Ivys Energy Solutions and McPhy Energy (MA)
- PDC Machines (PA)

Produces H2 via electrolysis

Dispenses 1 kg of H₂ in 15 mins or less

Allows 700 bar refueling

More info: www.teamsimplefuel.com


Email: connect@ivysinc.com

Collaboration Tools: Increasing Awareness

Celebrate Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic- weight-day)

Learn more: energy.gov/eere/fuelcells

Give an "Increase
your H2IQ"
presentation in your
community

Download slide deck for free at at:

energy.gov/eere/fuelcells/downloads/increase-your-h2iq-training-resource

Upcoming

Save the Dates!

H2@Scale Workshop
April/May (planning
in process)

AMR and Industry Expo June 12-15, 2018

Washington, DC

Requests for Information

Identifying priorities for reducing barriers to deployment of hydrogen infrastructure

(tentative release date - March 2018)

Hydrogen to capture remote energy resources (tentative release date – Feb/ 2018)

HTAC Recommendations Being Addressed

Recommendation	Actions Taken (Examples)
Ensuring positive retail hydrogen fueling experience	 13 projects on H₂ fueling components selection through NREL's 2017 CRADA call Modified H₂ metrology standard of 5% was accepted through NREL and NIST collaboration DOE's \$10M investment in H2FIRST (Hydrogen Refueling Infrastructure Research and Station Technology) to jumpstart collaborations addressing H₂ infrastructure challenges
Continue efforts in material and process integration and technology acceleration in order to meet the 2020 EPACT Title VIII goals	 Lab-led consortia HydroGEN, ElectroCAT, and HyMARC part of DOE's EMN and focusing on materials R&D challenges for H₂ and fuel cells H2@Scale launched to leverage H₂ across multiple sectors; 25 CRADA projects U.S. supply chain strengthening activities: regional technical exchange centers, public supply chain database (HFC Nexus), etc.
Maximize the role of the Hydrogen Safety Panel (HSP)	 DOE and HSP strategic plan underway Pursued collaborations with NFPA on standard permitting template
Leverage the capabilities of public-private partnerships	 Continued communication with key regional partnerships (CaFCP, CCAT, OFCC, etc.) Engaged Clean Cities Coalitions to include hydrogen information into their programs
Identify and support other federal and state agencies	 Ongoing coordination through IWG (Interagency Working Group) HSP course on safety at FEMP's Energy Exchange to encourage safe incorporation of hydrogen into federal fleets

HTAC Impact – Examples

HTAC Annual Reports and Letters to DOE Secretary

2007 to 2016

Subcommittee Outputs

- Hydrogen Safety & Event Response (2017)
- Communication & Outreach (2017)
- Manufacturing (2014)

Other Examples

- Input on H-Prize
- Peer review of H2 cost target
- Input on R&D Plan
- H2@Scale

U.S. DEPARTMENT OF ENERGY

Potential Areas of Input by HTAC

Potential topics for future prizes

Complement conventional grant process

Additional feedback on H2@Scale including

- Medium and heavy duty applications
- Market segmentation analysis
- Enabling lower cost storage, delivery, infrastructure
- Clustering approach to increase demand

Leveraging resources

- L'Innovator (investment community & mfg)
- Industry and other agencies for later stage R&D
- Lessons learned from other industries

Other

Thank You &

Additional Information

Dr. Sunita Satyapal

Director
Fuel Cell Technologies Office
Sunita.Satyapal@ee.doe.gov

energy.gov/eere/fuelcells