

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Overview of U.S. Department of Energy's H2@Scale Concept and RD&D Needs

Neha Rustagi- Fuel Cell Technologies Office

Hydrogen Technical Advisory Committee Meeting- February 2018

Washington, D.C.

H2@Scale Stakeholder Feedback– Examples

FCTO R&D Established that Hydrogen Can Support Grid Services

200 hours of testing established that electrolysis has potential to meet performance requirements of grid services.

Hydrogen Integration with Nuclear Generation

Value Proposition

- Improve economics of fully amortized, existing reactors
- Improve economics of next generation of reactors
- Economic production of H₂

Research Needs

(aligned with HydroGEN)

- High-temperature electrolysis:
 - Elucidate degradation mechanisms
 - Develop materials for durable high current density operation
 - Evaluate load following capability
- Thermochemical:
 - Discovery of redox materials capable of efficient H₂ production
 - Development of high-temperature materials for thermochemical reactors

- Several advanced reactor types currently being studied in the U.S. (e.g. Gen IV designs) operate at 500-1,000°C, compatible with high-temperature H₂ production.
- Low-temperature reactors can be integrated with H₂ production through heat recuperation.

Growing Demands for Hydrogen: FCEVs

- Retail stations currently reach 80% utilization in average of 5 years.¹
- High-throughput hydrogen fueling stations (e.g. 1,000 kg/day) of interest.
- >2,000 tonnes/year of renewable hydrogen needed by 2022 to satisfy FCEV demand.¹
- Emergence of medium- and heavy duty fleets would bolster demand.
- 1. http://www.energy.ca.gov/2017publications/CEC-600-2017-011/CEC-600-2017-011.pdf

Growing Demands for Hydrogen: Chemicals

- U.S. imports of ammonia and urea projected to decline, and exports of methanol projected to begin by 2020.
- U.S. demand for nitrogenous fertilizers expected to grow by 1.5%/year by 2020.²
- Global methanol demand expected to grow >3.5%/year until 2026.³
- Small-scale distributed methanol plants emerging worldwide.³
- 1. https://www.americanchemistry.com/Policy/TraOde/Fueling-Export-Growth-US-Net-Export-Trade-Forecast-for-Key-Chemistries-to-2030.pdf
- 2. http://www.fao.org/3/a-i6895e.pdf
- 3. https://cdn.ihs.com/www/Events/WPC2017/Presentations/IHSM-Nash-Globalmethanolchain-March22.pdf

Chemicals R&D Needs: Examples

- Discovery and development of low-cost catalysts for efficient electrochemical synthesis at low temperatures and pressures.
- Bandgap materials and catalysts for photoelectrochemical synthesis technologies using sunlight.
- Development of alloys for thermochemical approaches to chemical synthesis.
- Characterization and development of catalysts for methanol synthesis under varying operating conditions (e.g. composition, temperature and pressure of feedstock gases)

Hydrogen Infrastructure

Industry	Key Applications	Supply Systems	Volume
II Generali Industrial	LaboratoriesFuel Cell Applications	 Small on-site Cylinders Liquid H₂ 	Low <5 mmscfd
Electronics	Thin-film solarMaterials Processing	 Tube trailer Liquid H₂ Small On-Site Plant 	
Glass	 Semi-Conductors Float glass mfg Metal Conditioning 	Liquid H₂On-Site Plant	Medium 5-100 mmscfd
Other	ChemicalsFuel Purification	Liquid H2On-Site PlantPipeline	
Refining	Hydro-processingBio-Fuels	PipelineOn-Site Plant	High 60-200+ mmscfd

Modes of hydrogen delivery depend on quantity of hydrogen demanded, stability of demand, and proximity of demand to supply.

Hydrogen Energy Storage is Scalable

Overview of Energy Storage Technologies in Power and Time

Image: Hydrogen Council

Hydrogen can be used to monetize surplus electricity from the grid, or remote, off-grid energy feedstock (e.g. solar, wind) for days to months.

Hydrogen Infrastructure R&D Needs: Examples

- Cross-cutting materials compatibility understanding:
 - Microstructural modeling of hydrogen induced damage of steels
 - Benchmarking polymer and steel performance in varying hydrogen environments
 - Development of novel steel alloys and polymers for reliable highpressure, low-temperature operation.
- Scalable, efficient liquefaction technologies (e.g. caloric materials)
- Chemical carriers for low-cost, high-volume hydrogen storage and transport
- Development of innovative fueling technologies for vehicles, such as:
 - Non-mechanical compression for improved durability
 - Novel polymers, fiber reinforcements, and coatings for reliable hydrogen dispensing hoses and seals
 - Strategies to reduce setback distances with liquid hydrogen storage

Future Work in 2018...

- Cross-office Request for Information (in collaboration with Solar, Wind, Water, Geothermal, Nuclear, and other DOE Offices).
- H2@Scale RD&D Roadmap draft release.
- Evaluation of electrolyzer capacities required to balance power flows and stabilize frequency disturbances under varying renewable energy penetrations.
- Evaluation of impacts of dynamic grid integration on electrolyzer components.
- Spatial and infrastructure assessments of economic potential of H2@Scale.

Thank you! https://energy.gov/eere/fuelcells/h2-scale