

H₂@Scale Analysis and Project Developments

Mark Ruth & Paige Jadun

February 13, 2018

NREL/PR-6A20-68429

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Conceptual H₂@Scale Energy System

Illustrative example, not comprehensive

- Technical potential of demand for hydrogen
- National-scale economic potential
- Spatial / temporal analysis initiated

Technical Potential: Definition

Technical potential is the subset of the available resource potential that is constrained by real-world geography and system performance but not economics

Brown, A., P. Beiter, D. Heimiller, C. Davidson, P. Denholm, J. Melius, A. Lopez, D. Hettinger, D. Mulcahy, and G. Porro. 2015. *Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results.* Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-64503

NATIONAL RENEWABLE ENERGY LABORATORY

Technical Potential Hydrogen Demand

Total	I Hydrogen Demand for the Industrial S Metric Ton H2/yr Normalized by County Area	Sector Prelimina	Use Y Results	Technical potential (million metric tonne H ₂ / year)
A STRAKE			Industr	ial Use
		1	Refineries & CPI [§]	8*
			Metals	5
		- 1 - 1	Ammonia	5
E.			Natural Gas	7
and a second	· · · · · · · · · · · · · · · · · · ·		Biofuels	4
Total Demand (metric ton H2 per sg mi / yr)	This analysis represents total hydrogen demand from the industrial sector: entresis, biobals, armonia and natural	This map was produced by the National Renewable Energy Laboratory	Light Duty Vehicles	28
989-126774 89-199 49-89 23-49-	gas systems (restalls) is not included). Each industrial sector has been normalized by an air their respective spatial scale, and then summarized by county to identify the total hydrogen demand for the industrial sector.	for the U.S. Department of Energy. Nicholas Giley, Much 27, 2017	Other Transport	3
0 - 2.3 Total: 24,117,425 metric ton H2 / yr	Latta Source: regl. analysii	INTONIC RELEVANCE ENERGY LABORATORY	Total	60

Total demand potential:

60 MMT/yr

Current U.S. market: ≈ 10 MMT/yr

Near-term Outlook for Hydrogen

Production Volume: 5% CAGR (2014-2019)¹

[§] CPI: Chemical Processing Industry not including metals, biofuels, or ammonia

* Current potential used due to lack of consistent future projections

Light duty vehicle calculation basis: 190,000,000 light-duty FCEVs from <u>http://www.nap.edu/catalog/18264/transitions-to-alternative-vehicles-and-fuels</u> 1. Global hydrogen Generation Market by Merchant & Captive Type, Distributed & Centralized Generation, Application & Technology- Trends & Forecasts (2011-2016)

NATIONAL RENEWABLE ENERGY LABORATORY

Initial Analysis: Where Resources are Sufficient

- PV and wind resources exceed industrial + transportation demand (not including metals) in counties colored blue
- Industrial + transportation demand is greater than resources only in counties colored red
- Nuclear production could provide the necessary additional generation

Nuclear Energy Plants

(metric ton/mi²/yr) 2,000 - 4,5001,000 - 2,000350 - 1,000 0 - 350-12,200 - 0

Announced Retirement **Recently Retired**

This analysis represents potential generation from utility-scale photovoltaics and onshore wind resources minus total hydrogen demand from the industrial sector: refineries, biofuels, ammonia and natural gas systems (metals are not included) and the transport sector: light duty vehicles and other transport. The data has been normalized by area at their respective spatial scales, and then summarized by county.

Data Source: NREL analysis

Robson, A. Preserving America's Clean Energy Foundation. Retrieved March 23, 2017, from http://www.thirdway.org/report/preserving-americas-clean-energy-foundation

This map was produced by the National Renewable Energy Laboratory for the U.S. Department of Energy. Nicholas Gilroy, March 27, 2017 NATIONAL RENEWABLE ENERGY LABO

Currently Operating

Economic Potential: Definition

Economic potential is the subset of the technical potential where the cost required to produce hydrogen is below the revenue available

Brown, A., P. Beiter, D. Heimiller, C. Davidson, P. Denholm, J. Melius, A. Lopez, D. Hettinger, D. Mulcahy, and G. Porro. 2015. *Estimating Renewable Energy Economic Potential in the United States: Methodology and Initial Results.* Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-64503

NATIONAL RENEWABLE ENERGY LABORATORY

Using National Demand and Supply Curves to Estimate Potential

The relationship between the price of an economic good and the quantity that is **produced**: how much are producers willing and able to produce at a given set of prices?

The quantity where the **demand price is equal to the supply price**, which requires that there is no excess supply or demand. The market will push price and quantity to these values.

Schwartz, Robert A. *Micro Markets A Market Structure Approach to Microeconomic Analysis*. Wiley Finance. Chichester: Wiley, 2010.

NATIONAL RENEWABLE ENERGY LABORATORY

H₂@Scale Economic Potential Approach

- Develop hydrogen **demand curves** for seven markets
 - Refineries
 - o Ammonia
 - Synthetic fuel
 - Light-duty vehicles (LDV)
 - Biofuels
 - o Metals
 - Natural gas injection
- Develop hydrogen supply curves for three production processes:
 - Low-temperature electrolysis using otherwise-curtailed electricity (OCE)
 - Natural gas steam methane reforming (SMR)
 - Nuclear plants with high-temperature electrolysis (HTE)
- Develop scenarios using different combinations of supply and demand curves

Scenario Demand Curves

Demand Curve Scenario Assumptions

Demand	Base Case (High)	H ₂ @Scale Success (High Tech.)	Traditional Energy Focus (Low)
Metals Reshoring	Economically competitive	Willingness to pay for H ₂ for metals	Economically competitive
LDV	Economically competitive	Full potential at \$2.50/kg	Economically competitive
Synthetic Fuels	Economically competitive	Full potential at \$2.00/kg	Economically competitive

OCE Supply Curve Calculation Methodology

ReEDS Model

- U.S. capacity expansion model
- Competes conventional, renewable, and storage technologies
- Projects capacity, generation, and transmission across 136 balancing areas out to 2050

Assumptions

- ReEDS input parameters to achieve high renewable energy penetration
- Higher natural gas prices
- Lower renewable energy technology costs

Supply Curve

- Curtailed electricity from ReEDS vs. value of otherwise curtailed electricity (OCE)
- H2A model is used to convert this to a low-temperature electrolysis hydrogen supply curve

Hydrogen Supply Curves for Three Production Options

\$3.00 Preliminary Results AEO 2017 Reference AEO 2017 Low Oil & Gas Resource \$2.50 Hydrogen Cost (\$/kg) \$2.00 \$1.50 \$1.00 \$0.50 Natural gas \$0.00 5M 10M 15M 20M 25M 30M 35M Available Hydrogen (MT per year)

Generated supply curves for hydrogen from three sources:

- Otherwise curtailed electricity from ReEDS results
- Natural gas based on current production and future potential (including a capital cost)
- Nuclear energy based on converting 20%-60% of the current nuclear power fleet to hydrogen production

Aggregated Supply Curves

Independent supply curves combined to create three aggregate supply curves

Hydrogen (Million MT per year)

Key Assumptions for Each Case

Generator	Base Case	H ₂ @Scale Success	Traditional Energy Focus
Electrolytic	Retail w/ services elec. price	Low cost/high availability (Wholesale)	High cost/low availability
Nuclear	20% available at low cost	20% available at low cost	20% available at low cost
SMR	2017 AEO Low Oil & Gas Resource NG prices	2017 AEO Low Oil & Gas Resource NG prices	2017 AEO Reference NG prices

Scenario Summary Chart

Equilibria between supply and demand used to estimate market sizes and prices

Economic Potential: Scenario Summary

Preliminary Results

	Base Case	H ₂ @Scale Success	Traditional Energy Focus
H ₂ Use	21 MMT/yr	38 MMT/yr	17 MMT/yr
H ₂ Price	\$1.78/kg	\$1.59/kg	\$1.31/kg
Demand (MMT/yr)	 Refining (8), Ammonia (3), Synthetic fuel (1), LDVs (9) 	 Refining (8), Ammonia (3), Synthetic fuel (9), Metals (6), LDVs (13) 	 Refining (8), Ammonia (3), Synthetic fuel (1), LDVs (5)
Supply (MMT/yr)	 Low-temperature electrolysis (12), Existing nuclear plants (5), Existing NG reforming (4) 	 Low-temperature electrolysis (33), Existing nuclear plants (5) 	 NG reforming (6 MMT/yr from existing and 11 MMT/yr from new)
Electrolysis	16% curtailment, \$18/MWh wholesale price	33% curtailment, \$24/MWh wholesale price	No grid electrolysis

Economic Potential: Energy Use and Emissions Summary

H2@Scale can reduce emissions by up to 20% on top of baseline electricity sector emission reductions Preliminary Results

Reduction Metric	Base Case	H2@Scale Success	Traditional Energy Focus
NO_x (Thousand MT)	130 (1%)	230 (2%)	61 (1%)
SO_x (Thousand MT)	33 (1%)	170 (5%)	13 (0%)
PM₁₀ (Thousand MT)	10 (0%)	59 (2%)	4.0 (0%)
Crude Oil (Million Barrels)	470 (7%)	800 (12%)	280 (4%)
CO₂ (Million MT)	280 (9%)	590 (19%)	110 (4%)

H2@Scale can transform our energy system by providing value for otherwise-curtailed electricity and a clean feedstock for numerous industries

- Technical potential:
 60MMT H₂/ yr can reduce emissions by 15%
- Economic potential:

17-38 MMT H₂ / yr can be produced, given R&D advancements and access to low-cost intermittent power

Spatial / Temporal Analysis Initiated

Using the Scenario Evaluation and Regionalization Analysis (SERA) to simulate least-cost hydrogen delivery & storage systems given supply curves, demand locations, and timing

 Prices and availability of multiple resources

 Terrain, available use, etc.

- Capacity sized to meet forecasted demand
- Economies of scale balanced with delivery costs
- Truck delivery, rail, and pipeline with storage
- Tradeoffs (volume, distance) allow networked supply
- Located in 500+ metro areas
- Quantity set by economic potential scenarios

- DOE: Fred Joseck, Jason Marcinkoski, Neha Rustagi, Chris Ainscough (on detail)
- NREL: Wesley Cole, Elizabeth Connelly, Josh Eichman, Nicholas Gilroy, Brian Bush, Lori Bird, Bryan Pivovar, Keith Wipke
- ANL: Jeongwoo Han, Amgad Elgowainy
- LBNL: Max Wei
- PNNL: Karen Studarus

- Can you think of additional demand opportunities we should consider?
- Who might be involved in developing infrastructure necessary for hydrogen to be a key energy carrier?
 - Policy-makers
 - Regulators
 - Supply / demand
 - Project developers
 - o Others?
- What are the next steps to implementing H2@Scale?

Supporting Slides

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Technical Potential: Impact on Renewable Resources

	EIA 2015 current consumption (quads/yr)	Required to meet demand of 60 MMT / yr (quads/yr)	Technical Potential (quads/yr)
Solid Biomass	4.7	15	20
Wind Electrolysis	0.7	9	170
Solar Electrolysis	0.1	9	1,364

Total demand including hydrogen is satisfied by ≈6% of wind, <1% of solar, and ≈100% of biomass technical potential

Technical Potential: Impact on Fossil & Nuclear Resources

* Based on estimated recoverable reserves

Technical Potential: Impacts on Resources

Use	H ₂ Consumed	Resource Savings		Emissions Reduction
	MMT / yr	Petroleum (bbl/yr)	Natural Gas (quad btu/yr)	CO2 (million metric ton/yr)
Refineries	8	900,000	1.332	87
Metals	5	0	0.365	78
Ammonia	5	500,000	0.833	54
Natural Gas System	7	700,000	0.923	63
Biofuels§	4	77,500,000	-0.026*	28
Light Duty Vehicles	28	1,017,600,000	0.629	469
Other Transport	3	113,400,000	0.051	50
Total	60	1.2 Billion bbl	4.1 Quads	830 Million MT
Preliminary Results ~17% of U.S. petroleum ~14% of U.S. natural gas ~16% of U.S. energy- consumption in 2016 consumption in 2016 related emissions in 2016				
Growth in electrolytic hydrogen using renewable electricity can reduce petroleum and natural gas utilization by ≥15% *Negative values represent increase in use biofuels are credited to hydrogen				

Improvements Enabling Use of Low-Cost Electricity

Leveraging of intermittent low-cost electricity can enable low-cost hydrogen production and also support grid stability.

Remaining Analysis Challenges and Barriers

Technical Potential				
- Potential demand	Economic Potential	Additional analysis needs		
Supply resourcesImpact potential (limited)Infrastructure Issues	 - H₂ price requirements - Supply options and costs - Scenarios 	- Spatial issues - Additional scenarios		
	- Impact potential	- Economic inertia		

- Regional and spatial issues are being analyzed
- Impacts on economics, resources, and emissions at potential market sizes are not known with high fidelity
- Barriers to market entry and growth are poorly characterized

H2@Scale CRADA Call Selections

First round of Selections Include 25 Applications from:

- Air Liquide
- Aquahydrex
- California Energy Commission
- California Governor's Office of Business and Economic Development
- Connecticut Center for Advanced Technology
- C4-MCP, Inc.
- Electric Power Research Institute
- Exelon
- Frontier Energy
- GinerELX
- GTA, Inc.

- Honda
- HyET
- NanoSonic
- Nikola Motor
- Pacific Gas & Electric
- PDC Machines
- Quong & Asssociates, Inc.
- RIX
- Southern Company
- Tatsuno
- TerraPower

Selections and subsequent working group assignments are subject to negotiation.

H2@Scale Consortium: Structure

U.S. Department of Energy

R&D Priorities

- Modeling and analysis to guide R&D;
- Materials compatibility R&D;
- Grid simulation and testing;
- Safety R&D;

- Materials and component manufacturing R&D;
- Development and use of co-products;
- Performance verification & demonstration to guide R&D

H2@Scale R&D Working Groups

