U.S. Department of Energy Hydrogen Program

Hydrogen Storage Technical Status

Sunita Satyapal Acting Hydrogen Program Manager

Presentation to: Hydrogen Technical Advisory Committee

July 22, 2008

Goal and Objectives

GOAL: On-board hydrogen storage for > 300 mile driving range across different vehicle platforms, WITHOUT COMPROMISING passenger/cargo space, performance (wt, vol, kinetics, safety, etc.) or cost

Develop on-board storage systems to meet DOE targets, including:

- Capacity
- Operating temperature range (-40 to +85°C)
- Hydrogen supply rate/refueling rate
 - $\circ~0.02~g~H_2$ per sec. per kW of power
 - \circ Refueling time <3 min. for 5 kg H₂
- System cost
- Fuel cost
- Safety, C&S, reliability, cycle life, efficiency, etc.

Industry has made significant progress with vehicle designs

- Vehicles are being designed by OEMs that can achieve > 300 miles
 - 350 or 700 bar
 - 1 to 4 tanks
 - Specified range from ~200 to > 350 miles
- But performance, space on-board and cost are still challenges for mass market penetration...
- Is there a low pressure alternative?*

Strategy for DOE-funded R&D

- Focus is on novel approaches, high risk- high impact concepts
- Complements current industry work on tanks

Technology Validation Learning Demonstration

LATEST KEY FIGURES:

- NUMBER of VEHICLES: 92
- NUMBER of STATIONS: 16
- EFFICIENCY: 53 58%
- RANGE: 103 190 miles
- FUEL CELL SYSTEM DURABILITY: 1900 hours (~57,000 miles)

Summary:

Improved on-board hydrogen storage technologies are necessary to meet range targets across multiple vehicle platforms in the long term.

http://www.nrel.gov/hydrogen/cdp_topic.html

This led to the launching of the National Hydrogen Storage Project.

Strategy - Diverse, Balanced Portfolio

National Hydrogen Storage Project¹

1. Coordinated by DOE Energy Efficiency and Renewable Energy, Office of Hydrogen, Fuel Cells and Infrastructure Technologies

- 2. Basic science for hydrogen storage conducted through DOE Office of Science, Basic Energy Sciences
- 3. Coordinated with Delivery Program element

~40 Universities, ~20 Companies, ~15 Federal Laboratories

Applied R&D Hydrogen Storage "Grand Challenge" Partners Diverse Portfolio with University, Industry & National Labs

	Cei	nters of Excelle	nce		Independent Projects
Metal Hydri Center National Laborat Sandia-Liverm Industrial partne General Electr HRL Laborato Intematix Corp Universities: CalTech Stanford Pitt / GATech Hawai'i / UNB Illinois Ohio State Nevada-Reno Utah Federal Lab Part Brookhaven JPL, NIST Oak Ridge Savannah Riv	ide tory: nore ers: ric ories p. thers:	Hydrogen Sorption Center National Laboratory: NREL Industrial partners: Air Products & Chemicals Universities: CalTech Duke Miami UnivOH Michigan North Carolina Penn State Rice Univ. of Chicago Federal Lab Partners: Argonne Lawrence Livermore NIST Oak Ridge	Chemi Sto Nationa Los A Pacif Industri Inter Rohr US B Univers North Penn Alaba Calife Univ. Penn Wasl Federal INL	cal Hydrogen rage Center Laboratories: Alamos ic Northwest al partners: natix Corp. nnium Cell n & Haas orax ities: nern Arizona State ama ornia-Davis of Missouri sylvania nington Lab Partners:	Advanced Metal Hydrides UOP Univ. of Connecticut Delaware State Sorbent/Carbon-based Materials UCLA State University of New York Gas Technology Institute UPenn & Drexel Univ. Chemical Hydrogen Storage Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC Other New Materials & Concepts Alfred University Michigan Technological University UC-Berkeley/LBL UC-Santa Barbara Univ. of Arkansas Purdue UNLV Tanks, Safety, Analysis & Testing Lawrence Livermore Nat'l Lab
		Desis Calanas (Office			Quantum

Coordination with: Basic Science (Office of Science, BES)

MIT, U.WA, U. Penn., CO School of Mines, Georgia Tech, Louisiana Tech, U.Georgia, Missouri-Rolla, Tulane, Southern Illinois, Rutgers, Stonybrook, UC Davis, UC Santa Barbara, Sth Florida, Missouri-Columbia; Labs: Ames, BNL, LBNL, ORNL, PNNL, SRNL

Argonne Nat'l Lab, TIAX LLC

Savannah River Nat'l Lab

SwRI, UTRC, Sandia Nat'l Lab

Progress Tanks

- Demonstrated 103 to 190 mile range across 92 vehicles (Gen 1) through Technology Validation activity
- Demonstrated ~ 2X increase in dormancy using cryo-compressed tanks (LLNL)
- Assessed high P tank cost (TIAX)
 - High volume cost projections:
 - ~ \$27/kWh (700 bar)
 - Assessed cryo-compressed tank cost & sensitivity analysis

System Gravimetric Capacity 350 bar: 2.8-3.8 wt.% 700 bar: 2.5-4.4 wt%

System Volumetric Capacity 350 bar: 17-18 g/L 700 bar: 18-25 g/L

Hydrogen Storage Budget

FY 2009 REQUEST = \$59.2M FY 2008 APPROPRIATION = \$43.5M

FY2009 Emphasis

- Increase engineering in addition to materials R&D through Centers of Excellence and independent projects to enable system targets.
- Focus on kinetics, temperature, pressure, cycle life, spent fuel regeneration, etc. *in addition* to capacity
- Strengthen tank R&D to address NAS recommendations. Focus on cost reduction and advanced concepts. Also applicable to materials-based approaches.
- Continue close coordination with Basic Science

Hydrogen Storage Collaborations

Applied R&D under the President's Hydrogen Fuel and Advanced Energy Initiatives is coordinated among national and international organizations

H₂ STORAGE – Examples of International Collaborations

0

HYDROGEN IMPLEMENTING AGREEMENT

IEA – HIA TASK 22

A total of 50 projects are active.

This includes participation by 17 *countries and the European Commission and 52 official experts.*

Project Types:

- Experimental, engineering or theoretical modeling (scientific or engineering)
- Projects cover:
 - ✓ Reversible metal hydrides
 - ✓ Nanoporous materials
 - Regenerative chemical hydrides
 - Environmental reactivity properties of materials

International Partnership for the Hydrogen Economy

A total of 5 projects are IPHE endorsed.

- Reversible Solid State Hydrogen Storage for Fuel Cell Power supply system (Lead: Russian Academy of Sciences)
- NESSHY Novel Efficient Solid Storage for Hydrogen (Lead: National Research Center "Demokritos," EU)
- Hydrides & Nanocomposites in Hydrogen Ball Mills (Lead: University of Waterloo, Canada)
- Combination of Amine Boranes with MgH₂ & LiNH₂ (Lead: Los Alamos & Pacific Northwest National Labs, USA)
- Fundamental Material Property Testing & Analysis (Lead: Savannah River National Lab, USA)

H₂ STORAGE – International Collaboration Examples: Chemical Hydrogen Storage CoE

MOU Between LANL, AIST and NEDO

- LANL established a MOU with NEDO and AIST for technical exchange.
- The MOU was signed in September, 2007, to be updated every two years.

Status

- Three technical exchange workshops on hydrogen fuel cells and hydrogen storage were conducted.
- LANL and AIST will collaborate to study hydrogen storage materials using neutron diffraction techniques at LANL.
- U.S. scientists are visiting AIST, Hiroshima University and Tohoku University to learn about new advancements in hydrogen storage in Japan.

* 🔷 🔸

IPHE Hydrogen Storage Project Summary

Name	Recent Accomplishments	Participants
Reversible Solid State Hydrogen Storage for Fuel Cell Power Supply System	 Development of heat and mass transfer calculation methods in the systems of solid-state hydrogen storage. Integrated hydrogen storage and purification system for FC based power units with capacity up to 10 kW(e). 	RU, CN, DK, IS, JP, KR, NO, US
NESSHY- Novel Efficient Solid Storage for Hydrogen	 Promising capacity on metal doped aerogels observed via spillover mechanism, including room temperature storage. 	EC, CN, FR, DE, IS, NO, UK, US, DK, GR, NL, PO, SE, CH, TR
Mechanical Synthesis and Rehydrogenation of Complex Hydrides and Nanocomposites in Hydrogen Ball Mills	 Project involves research on direct synthesis of new complex hydrides and nanocomposites conducted in specialized 'hydrogen ball mills' and other synthesis approaches. 	CA, AU, RU, US
Combination of Amine Boranes with MgH2 & LiNH2 for High Capacity Reversible Hydrogen Storage	 Recent initial results are promising, showed higher storage capacity and release kinetics for Li-amine borane as compared to that of amine borane. 	US, UK, NZ
Fundamental Safety Testing and Analysis of Hydrogen Storage Materials & Systems	• Project involves analyzing the reactivity of select hydrogen storage materials with air and water under various exposure conditions. Results will be used in risk analyses and development of mitigation strategies; and made available for codes and standards development efforts.	US, CA, DE, JP

For More Information

http://www1.eere.energy.gov/ hydrogenandfuelcells/storage/

Sunita Satyapal, Team Leader

Overall Storage/ FreedomCAR Tech Team/International sunita.satyapal@ee.doe.gov

Grace Ordaz

Chemical Hydrides, Chemical Hydrogen Storage Center of Excellence grace.ordaz@ee.doe.gov

Gary Sandrock

On Assignment to DOE Oak Ridge Nat'l Lab gary.sandrock@ee.doe.gov

Monterey Gardiner

Tanks, Sorbents, Delivery monterey.gardiner@ee.doe.gov

Carole Read

Sorbents & Carbon, Hydrogen Sorption Center of Excellence/FreedomCAR Tech Team carole.read@ee.doe.gov

Ned Stetson

Metal Hydrides, Metal Hydride Center of Excellence, SC&S interface ned.stetson@ee.doe.gov