
Energy Technology Innovation

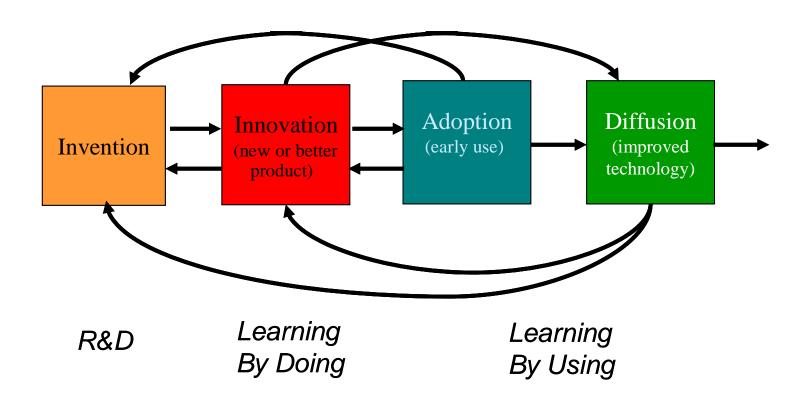
The Role of Government RD3

Anthony Eggert
Hydrogen Technical Advisory Committee
July 15, 2009

Stages of Energy Technology Innovation (ETI)

Barriers

- Difficulty of capturing benefits of R & D
- Long time horizons
- High risks


- Difficulty of capturing benefits of demonstration
- Long time horizons
- Risks
- Large capital costs

- Financing of incremental cost
- Cost uncertainty
- Technological and other risk

- High transaction costs
- Price for competing technologies doesn't include externalities:
- Lack of retail finance
- Lack of information

Source: PCAST 1999

Stages of ETI

Source: Rubin (2005)

Stages of ETI

Figure 10. The R&D - Field Experiment Cycle START RESOLVE BARRIERS Cost Durability Performance R&D INDEPENDENT READINESS COMMERCIALIZE STOP STOP REVIEW REVIEW FIELD EXPERIMENT/ DEMONSTRATION VALIDATE Cost, Performance Durability Reliability Emissions Manufacturability Codes/Standards Source: DOE/EERE

Role of Government Support

Direct Government Funding of Research and Development (R&D)

- R&D contracts with private firms
- R&D grants and contracts with universities
- Intramural R&D conducted at gov't laboratories
- R&D contracts with consortia (2 or more of the actors above)

Direct or Indirect Support for Commercialization and Production; Indirect Support for Development

- Patent protection
- R&D tax credits
- Production subsidies or tax credits to firms bringing new technologies to market
- Tax credits or rebates for new technology buyers
- Government procurement
- Demonstration projects

Support for Learning and Diffusion of Knowledge and Technology

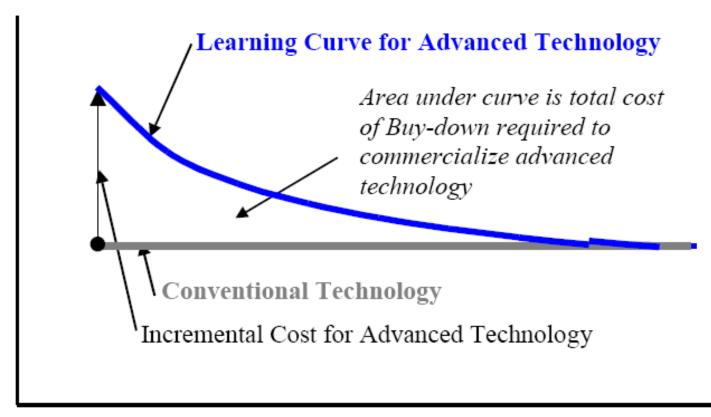
- Education and training
- Codification and transfer of knowledge
- Technical standardsetting (non-regulatory)
- Technology and/or industrial extension services
- Publicity and consumer information

Source: Alic, Mowery and Rubin, 2003

CCTP Goal Area	Technology Strategies	Education, labeling and information dissemination	Tax policy and other financial incentives	Coalitions & partnerships	International cooperation	Market conditioning including government procurement	Technology demonstration	Codes and standards	Legislative act of regulation	Risk mitigation
	Transportation	54	29	24	15	16	12	10	7	1
Energy End-Use and Infrastructure	Buildings	58	21	22	15	20	5	14	5	3
	Industry	45	14	28	13	4	6	2	1	2
	Electric Grid and Infrastructure	19	7	11	12	4	6	1	3	1
Energy Supply	Low-Emission, Fossil- Based Fuels and Power	23	15	8	14	5	6	2	1	1
	Hydrogen	11	6	2	5	3	4	3	0	1
	Renewable Energy & Fuels	48	30	19	19	18	11	7	7	2
	Nuclear Fission	7	4	3	7	2	2	0	0	2
Carbon Sequestration	Carbon Capture	5	5	4	6	2	4	0	0	1
	Geologic Storage	4	4	4	7	2	3	1	1	1
·	Terrestrial Sequestration	18	12	7	8	5	2	0	0	1
Non-CO₂ Greenhouse Gases	Methane Emissions from Energy and Waste	14	3	7	9	1	1	0	2	1
	Methane and Nitrous Oxide Emissions from Agriculture	8	7	1	6	1	0	0	0	2
	Emissions of High Global- Warming Potential Gases	17	3	15	6	1	0	2	0	1
	Nitrous Oxide Emissions from Combustion and Industrial Sources	14	9	10	7	2	3	6	5	1
Totals		345	169	165	149	86	65	48	32	21

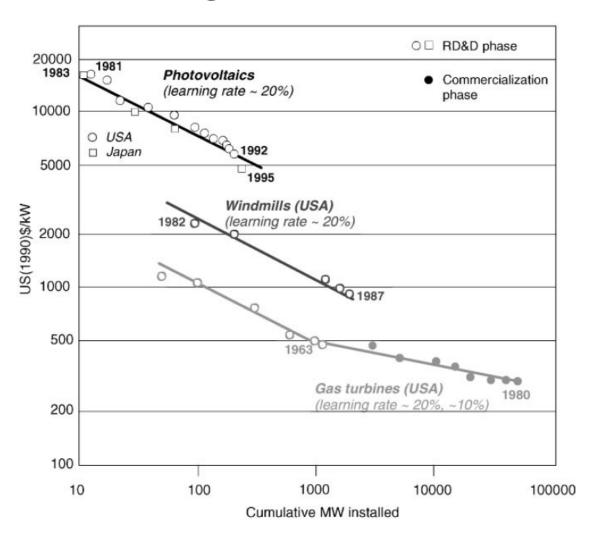
^{*} Column totals represent the number of deployment activities impacting the 15 technology strategies. Totals are indicative measures of relative frequency of application. Double counting occurs because a single deployment activity may impact multiple technology strategies. The count does not include activities that are authorized but not implemented. See Annex B for details.

Source: USCCTP/CCCSTI

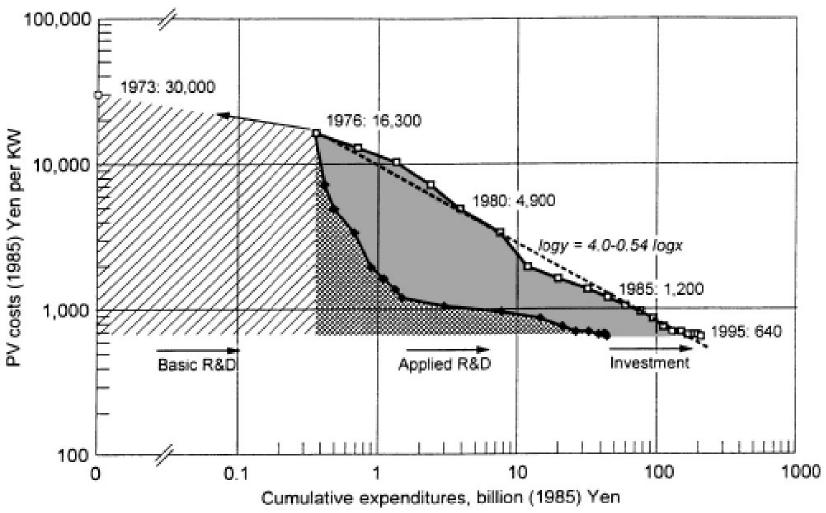

EERE Hydrogen and Fuel Cells Budget (in thousands)

Key Activity	FY 2007 appropriation	FY 2008 appropriation	FY 2009 appropriation	FY 2010 request
Fuel Cell Systems R&D	0	0	0	63,213
Hydrogen Production & Delivery R&D	33,702	38,607	10,000	0
Hydrogen Storage R&D	33,728	42,371	59,200	0
Fuel Cell Stack Component R&D	37,100	42,344	62,700	0
Technology Validation	39,413	29,612	14,789*	0
Transportation Fuel Cell Systems	7,324	7,718	6,600	0
Distributed Energy Fuel Cell Systems	7,257	7,461	10,000	0
Fuel Processor R&D	3,952	2,896	3,000	0
Safety, Codes & Standards	13,492	15,442	12,500*	0
Education	1,978	3,865	4,200*	0
Systems Analysis	9,637	11,099	7,713	5,000
Manufacturing R&D	1,928	4,826	5,000	0
Market Transformation	0	0	4,747	0
Total	\$189,511	\$206,241	\$200,449	\$68,213

Source: DOE Report to Congress, 2009

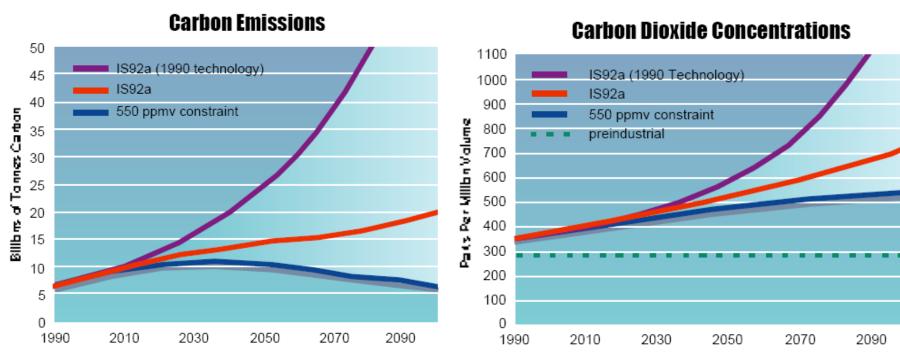

Discussion Questions

- 1. What is (or should be) the evolving role of USDOE spending on RD3?
- 2. Does the current plan reflect the appropriate priorities (across categories? across time?)
- 3. How can this spending best leverage existing and future private sector spending?
- 4. How do we create durable RD3 policy and avoid the typical boom/bust cycles of Government RD3 spending?
- 5. What is the role of Government RD3 in relation to other proposed policies/regulations?



number of units produced (cumulative)

Learning curves for ETI


Learning curves for ETI

Grubler, et. al., Energy Policy, 1999. 27(5): p. 247-280.

Why we need Energy Technology Innovation (ETI)

The Future With and Without Technological Change

Source: Edmonds, GTES 2004