

FUEL CELL USERS PANEL

CASE STUDIES IN REAL ESTATE DEVELOPMENT 360 STATE STREET AND THE OCTAGON

MICHELLE LAUTERWASSER

DOE HYDROGEN AND FUEL CELL
TECHNICAL ADVISORY COMMITTEE MEETING

JUNE 14, 2011

PRESENTATION OUTLINE

INTRODUCTION

360 STATE STREET. NEW HAVEN, CT
PROGRAM AND GREEN OBJECTIVES
RENEWABLE TECHNOLOGIES CONSIDERED
FUEL CELL ANALYSIS
FUEL CELLS AND RESIDENTIAL DEVELOPMENT
FUEL CELLS AND POLICY
FUEL CELL INSTALLATION AND OPERATION
FUEL CELL EFFICIENCY AND ECONOMICS

CASE STUDY II

THE OCTAGON APARTMENTS. NEW YORK, NY
PROGRAM AND GREEN OBJECTIVES
RENEWABLE TECHNOLOGIES CONSIDERED
FUEL CELL ANALYSIS
FUEL CELL INSTALLATION
FUEL CELL ECONOMICS

FINAL THOUGHTS
THE FUTURE OF FUELS CELLS

360 STATE STREET New Haven, Connecticut

360 STATE STREET

NEW URBAN INFILL, MIXED-USE, MULTI-FAMILY HOUSING FUEL CELL INSTALLATION

FALL 2008 - FALL 2010

DEVELOPER / ARCHITECT:
BECKER + BECKER

INVESTMENT PARTNER:
BENTALL KENNEDY | MEPT

MEP ENGINEERS:
COSENTINI ASSOCIATES
LN CONSULTING

GREEN BUILDING CONSULTANTS:
ATELIER TEN
2ND LAW
LN CONSULTING

DEVELOPMENT PROGRAM - 700,000 SF

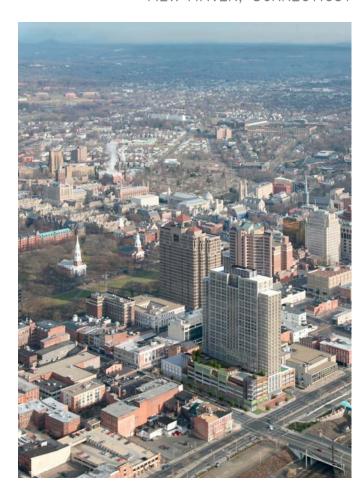
RESIDENTIAL

500 rental apartments | 50 affordable Studios, 1 bedroom – 3 bedroom Rent: \$1,200 - \$5,000

COMMERCIAL

30,000 SF retail and office, community-owned food co-op, Elm City Market

PUBLIC PARKING


4 story structured parking garage for 500 cars, Zipcars, electric car charging stations

COMMON AMENITIES

32,000 SF of amenities:

½ acre **Green Roof** and pool, art gallery, library, fitness center, yoga studio, theater, communal living room and kitchen, business center, children's playroom

360 STATE STREET New Haven, Connecticut

SUSTAINABILITY - LEED® ND PLATINUM

360 STATE STREET New Haven, Connecticut

360 STATE
STREET USES
50% LESS
ENERGY THAN A
BASELINE
RESIDENTIAL
BUILDING

	s Achieved ad 40 to 49 points Silver 50 to 59 points Gold 60 to 69 point	e Platinu	m 90	or more n	Possible Points	s: 1 0
	t Location & Linkage Possible Poil		_		Construction & Technology Possible Points	s: 3
Prereg 1	Smart Location, Option 1		Υ	Prereg 1	Construction Activity Pollution Prevention	
Prereg 2	Proximity to Water & Wastewater Infrastructure, Option 1			Credit 1	LEED Certified Green Buildings	
Prereq 3	Imperiled Species & Ecological Communities, No Species		3	Credit 2	Energy Efficiency in Buildings	
Prereg 4	Wetland & Water Body Conservation, Option 1		1	Credit 3	Reduced Water Use, Option 1	
Prereg 5	Agricultural Land Conservation, Option 2			Credit 4	Building Reuse & Adaptive Reuse	
Prereg 6	Floodplain Avoidance, Option 1			Credit 5	Reuse of Historic Buildings	
Prereq 6 Credit 1	Brownfields Redevelopment	2	1	Credit 6	Minimize Site Disturbance through Site Design, Option 1	
Credit 2	High Priority Brownfields Redevelopment	1		Credit 7	Minimize Site Disturbance during Construction, Option 1	
Credit 3	Preferred Locations	10		Credit 8	Contaminant Reduction in Brownfields Remediation	
Credit 4	Reduced Automobile Dependence, Options 1 & 3	8	5	Credit 9	Stormwater Management, Feb 2007 Version, Option 1	
Credit 5	Bicycle Network	1	1	Credit 10	Heat Island Reduction, Option 1	
Credit 6	Housing & Jobs Proximity, Option 1	3		Credit 11	Solar Orientation	
Credit 7	School Proximity	1	1	Credit 12	On-Site Energy Generation, Option 2	
Credit 8	Steep Slope Protection, Option 1	1		Credit 13	On-Site Renewable Energy Sources	
Credit 9	Site Design for Habitat or Wetland Conservation, Option 2	1		Credit 14	District Heating & Cooling	
Credit 10		1		Credit 15	Infrastructure Energy Efficiency	
Credit 11		1		Credit 16	Wastewater Management	
			1	Credit 17	Recycled Content in Infrastructure	
Neigh	nborhood Pattern & Design Possible Poil	nts: 39		Credit 18	Construction Waste Management	
		11.5.		Credit 19	Comprehensive Waste Management	
Prereg 1	Open Community			Credit 20	Light Pollution Reduction	
Prereg 2						
Prereq 2 Credit 1	Compact Development	7	6	Innova	tion & Design Process Possible Points	s:
Credit 2	Diversity of Uses	4				
Credit 3	Diversity of Housing Types	3	1	Credit 1.1	Innovation in Design: Exemplary Performance in SLLc6	
Credit 4	Affordable Rental Housing	2	-	Credit 1.2	Innovation in Design: Exemplary Performance in SLLc4	
Credit 5	Affordable For-Sale Housing	2	2		Innovation in Design: Exemplary Performance in GCTc12	
Credit 6	Reduced Parking Footprint	2		Credit 1.4	Innovation in Design: Green Building Education	
Credit 7	Walkable Streets	8	-	J)	Innovation in Design	
Credit 8	Street Network, Option 1	2	1	Credit 2	LEED Accredited Professional	
Credit 9	Transit Facilities	1	3.5%		LLED Accredited Professional	
Credit 10		2				
Credit 11		1				
Credit 12		1				
Credit 13		1				
Credit 14		1				
Credit 15		1				
Credit 16						

RENEWABLES CONSIDERED

360 STATE STREET

NEW HAVEN, CONNECTICUT

360 STATE STREET

NEW HAVEN, CONNECTICUT

- FUEL CELL ANALYSIS
 - Base Load: 475 KW
 - 24/7 demand for heat/hot water
 - Financial Incentives:
 - Federal Fuel Cell Tax Credits
 - CT CEF Fuel Cell Grant
 - Fuel Cell Class I Renewable for RECs
 - Discounted DG gas rate

360 STATE STREET

NEW HAVEN, CONNECTICUT

FUEL CELLS AND RESIDENTIAL DEVELOPMENT

- 16.7 million multi-family housing units in the U.S.
- Consume 117 billion kWh of electricity per year (21% of US energy usage)
- 0.8% of electricity to multifamily housing is provided by renewable power

Source: EIA, 2009 RECS_{UPDATE}

400 KW fuel cell provides 3.4 million kWh of electricity per year 35,000 fuel cells could take all multi-family buildings off the grid

360 STATE STREET

NEW HAVEN, CONNECTICUT

FUEL CELLS AND POLICY

Regulations

- Submetering not permitted for residential development
- Net Metering permitted for meter connected to renewable source only
- Net Metering reimbursable rate at wholesale time of export rate

FUEL CELL INSTALLATION

360 STATE STREET

NEW HAVEN, CONNECTICUT

FUEL CELL AND CHP OPERATION

360 STATE STREET

NEW HAVEN, CONNECTICUT

360 STATE STREET

NEW HAVEN, CONNECTICUT

FUEL CELL EFFICIENCY

Electric Utilization: 65%

- Provide electric to all common and commercial areas: 65% of fuel cell's capacity
- Excess will go back to utility grid with reimbursement

Heat Utilization: 90%

■ Waste heat will be used for domestic hot water heating, space heating, and pool heating. Excess heat is stored in thermal storage tanks

Fuel Cell life: 20 years with stack overhaul in year 10.

FUEL CELL ECONOMICS

360 STATE STREET
NEW HAVEN, CONNECTICUT

Total Investment: \$3,500,0000 (Fuel Cell Cost: \$1,875,000) Incentives:

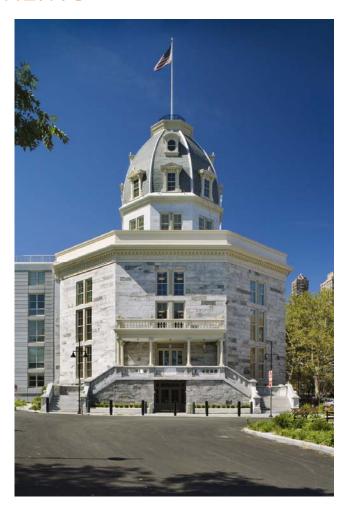
- ■CT CEF Grant: \$985,000
- ■Federal Tax Credit: \$3,000/ kWh or 30% of install cost: \$1,200,000
- ■REC sales, approximately \$50,000 per year depending on REC market pricing
- •DG natural gas rate- discount in CT removing distribution charges

Annual Avoided Energy Costs by Landlord + Sale: \$295,000

Payback with incentives: 5 Years | without incentives: 13 Years

THE OCTAGON

NEW YORK, NEW YORK


THE OCTAGON APARTMENTS

EXISTING
MULTI-FAMILY HOUSING
FUEL CELL INSTALLATION
2010-2011

DEVELOPER/ARCHITECT:
BECKER + BECKER

INVESTMENT PARTNER:
KENNEDY ASSOCIATES | MEPT

ENGINEER:
LN CONSULTING

THE SITE - ROOSEVELT ISLAND, NYC

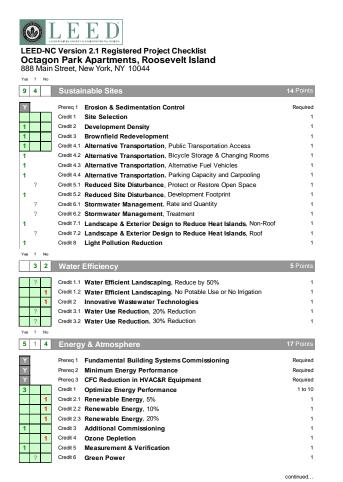
THE OCTAGON
NEW YORK, NEW YORK

SITE

THE OCTAGON

NEW YORK, NEW YORK

DEVELOPMENT - 550,000 SF | 500 UNITS



THE OCTAGON

NEW YORK, NEW YORK

SUSTAINABILITY - CERTIFIED LEED® SILVER

THE OCTAGON
USES 35% LESS
ENERGY THAN A
BASELINE
RESIDENTIAL
BUILDING AND WE
CONTINUE TO MAKE
IT GREENER

5	1	6	Materi	als & Resources	13 Points
1	7		Prereq 1	Storage & Collection of Recyclables	Required
		1		Building Reuse, Maintain 75% of Existing Shell	. 1
	+	1		Building Reuse, Maintain 100% of Shell	1
	1	1	Credit 1.3	Building Reuse, Maintain 100% Shell & 50% Non-Shell	1
1			Credit 2.1	Construction Waste Management, Divert 50%	1
	?		Credit 2.2	Construction Waste Management, Divert 75%	1
	1		Credit 3.1	Resource Reuse, Specify 5%	1
		1	Credit 3.2	Resource Reuse, Specify 10%	1
1			Credit 4.1	Recycled Content, Specify 5% (post-consumer + ½ post-industrial)	1
1			Credit 4.2	Recycled Content, Specify 10% (post-consumer + ½ post-industrial)	1
1			Credit 5.1	Local/Regional Materials, 20% Manufactured Locally	1
1			Credit 5.2	Local/Regional Materials, of 20% Above, 50% Harvested Locally	1
		1	Credit 6	Rapidly Renewable Materials	1
		1	Credit 7	Certified Wood	1
Y	s ?	No			
1	3 2	П	Indoor	Environmental Quality	15 Points
_		_		·	
				Minimum IAQ Performance	Required
				Environmental Tobacco Smoke (ETS) Control	Required
1			Credit 1	Carbon Dioxide (CO ₂) Monitoring	1
1			Credit 2		1
_1				Construction IAQ Management Plan, During Construction	1
1	_			Construction IAQ Management Plan, Before Occupancy	1
1	_			Low-Emitting Materials, Adhesives & Sealants	1
1				Low-Emitting Materials, Paints	1
1				Low-Emitting Materials, Carpet	1
1				Low-Emitting Materials, Composite Wood & Agrifiber	1
1			Credit 5	Indoor Chemical & Pollutant Source Control	1
1	_			Controllability of Systems, Perimeter	1
	?			Controllability of Systems, Non-Perimeter	1
1	_			Thermal Comfort, Comply with ASHRAE 55-1992	1
	?			Thermal Comfort, Permanent Monitoring System	1
1				Daylight & Views, Daylight 75% of Spaces	1
1			Credit 8.2	Daylight & Views, Views for 90% of Spaces	1
Y	_	No			
L	2	Ш	Innova	ation & Design Process	5 Points
1			Credit 1.1	Innovation in Design: AVAC Underground Garbage Removal System	1
				Innovation in Design: Provide Specific Title	1
				Innovation in Design: Provide Specific Title	1
F	T	Н		Innovation in Design: Provide Specific Title	1
1			Credit 2	· ·	1
Y	s ?	No			
3	4 11	12	Projec	t Totals (nys saytification actimates)	69 Points
3	- 11	12	Frojec	t Totals (pre-certification estimates)	US F UIIIIS

Certified 26-32 points Silver 33-38 points Gold 39-51 points Platinum 52-69 points

RENEWABLE POWER

THE OCTAGON NEW YORK, NEW YORK

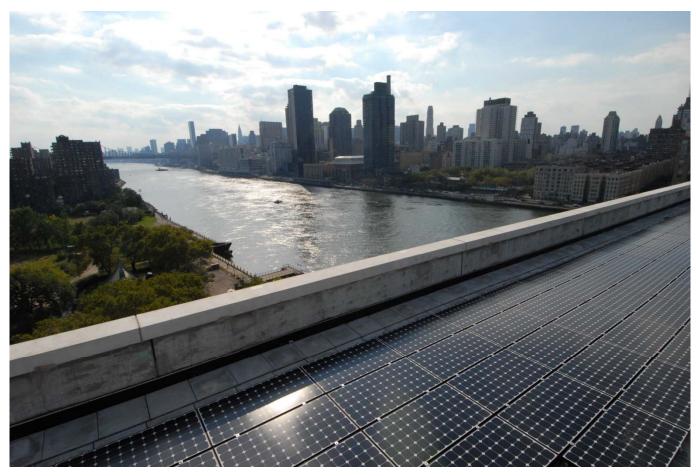


IMAGE OF THE OCTAGON 50 KW PHOTOVOLTAIC ARRAY - THE LARGEST ARRAY IN NEW YORK CITY

THE OCTAGON New York, New York

FUEL CELL ANALYSIS

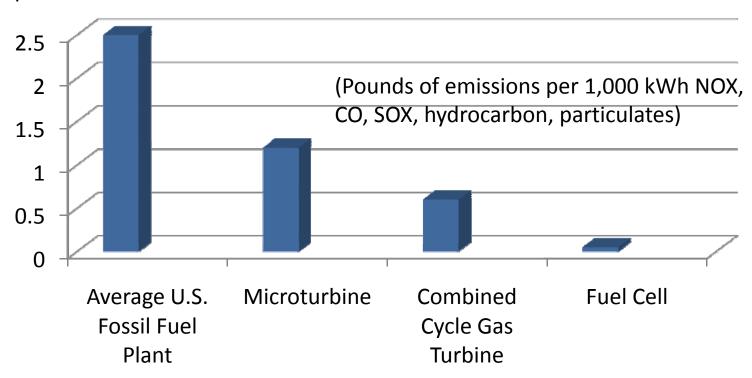
- Base Load: 600 KW
- 24/7 demand for heat/hot water
- Financial Incentives:
 - Federal Fuel Cell Tax Credits
 - NYSERDA DG CHP
 Demostration Program Grant
- Submetering permitted
- Construction/Design challengeswith existing building

THE OCTAGON New York, New York

FUEL CELL INSTALLATION

- Installation: Fall 2010, 6 months
- Electric Utilization: 100%
 - Provide electric to 500 residents
 and
 - all common areas
 - Excess will go back to utility grid,
 but without reimbursement
- Waste heat Utilization: 70%
- Waste heat will be used for domestic hot water heating and space heating
- Fuel Cell life: 20 years with stack overhaul in year 10

THE OCTAGON New York, New York


FUEL CELL ECONOMICS

- Total Install Cost: +\$3,700,000
 - \$2,175,000 for fuel cell unit + installation and existing system tie-in and upgrades
- Total Incentives: \$2,200,000
 - NYSERDA Grant \$1,200,000 upfront
 - Federal Tax Credit: \$3,000/ kWh or 30% of install cost: \$1,000,000
- Annual Energy Cost Savings: \$221,500
- Payback without incentives: 14 Years (not including stack overhaul in Yr. 10)
- Payback with incentives: 5 Years

REDUCED EMISSIONS

POWERING THE FIRST 1,000 HOMES 360 STATE AND THE OCTAGON

Fuel cell creates 1 ounce of pollution per 1,000 kWh of electricity produced Combustion generation creates 25 lbs of pollutants per 1,000 kWh of electricity produced

FINAL THOUGHTS

THE FUTURE OF FUEL CELLS

POWERING THE FIRST 1,000 HOMES

360 STATE AND THE OCTAGON

