

Hydrogen fuel cells for Unmanned Systems

Briefing to: DOE Hydrogen and Fuel Cell Technical Advisory Committee, Washington DC

Karen Swider-Lyons, Richard Stroman and Benjamin Gould NRL Chemistry Division Karen.lyons@nrl.navy.mil

13 March 2019

Hydrogen fuel cells for UAVs

NRL has worked with hydrogen fuel cells for over 15 years.

Spider Lion! ~ 2004 100 Watt fuel cell

UAV = unmanned air vehicleUAS = unmanned air systemUUV = unmanned undersea vehicle

Motivation for Hydrogen Fuel Cells

Fuel cell advantages:

- Higher energy than batteries
- Higher efficiency than engines
 Small engines ~10-15% efficient
 Fuel cells ~60% efficient
- Higher reliability than engines

Benefit to Navy:

- Long endurance electric UAVs (and UUVs)
- Quiet flights at 400 ft AGL with inexpensive payload
 - Lowers cost and OPTEMPO of missions
- Big UAV missions with a small UAVs and UUVs
 - Lower cost and maintenance
 - Less storage volume

Advantages of electric propulsion

- Near silent operation
- Instant starting
- Increased reliability
- Easier power control
- Reduced thermal signature
- Reduced vibration
- No electric generator

U.S. NAVAL RESEARCH LABORATORY

High energy of $H_2 \times$ high efficiency of fuel cell = long endurance

• For smaller systems and short missions – batteries always preferred

Ion Tiger – UAV for 24 h flight with 5 lb payload (2009)RESEARCH

NRL built up vehicle to wrap around hydrogen tank

SCALE 0.125

Swider-Lyons, et al., AIAA, 2011-6975

U.S.NAVAL

_ABORATOR\

Protonex Technology Corporation

Ion Tiger Program Fuel Cell:

•1 kg and 550 W net New

components/features

- •new humidifier design
- new air blower
- •higher power stack
- •integrated control electronics
- •99% H₂ utilization

Successfully flown by NRL since 2009 in Ion Tiger and XFC Several improvements: Electronics Hydrogen valves

> Demonstrated a flight on Boeing Insitu April 2016 – put 2 systems together

Water-cooled for high power Uses commercial fuel cell membranes (WL Gore, 3M, etc)

U.S. NAVAL RESEARCH LABORATORY

U.S.NAVAL RESEARCH LABORATORY

Hydrogen storage progression

Spider Lion - 2005 COTS paintball tank & regulator 610 Wh of hydrogen in 0.93 kg 1.6 wt% hydrogen

XFC - 2007 Modified COTS tank & custom regulator 1800 Wh hydrogen in 1 kg 4.5 wt% Hydrogen

2.9x

Ion Tiger - 2009 Custom tank & NRL regulator 500 g hydrogen in 3.8 kg 13% hydrogen storage

5000 psi H₂ demonstrated

Solid fuels not practical

- NRL teamed with Hypercomp Engineering on $\rm H_2$ Storage
- Type 3 metal liner & carbon overwrap

2.8x

- NRL lightweight regulator

Ion Tiger 24-Hour Flight with Fuel Cell

U.S. NAVAL RESEARCH LABORATORY

> Not shown: Greg Page and Rick Foch, airframe designers Rick Stroman, Fuel cell systems; Mike Baur, Ground station/Flight controls

23 h flight October 2009 with 4 lb payload

26 h flight 16-17 November 2009 with 5 lb payload

Protonex 580-W fuel cell 5000 psi H_2 (500 g)

"unofficial" world records for fuel cell powered flight"

Power profile for 23 hr flight

U.S. NAVAL RESEARCH LABORATORY

16 kg GTOW - 38 wt% fuel cell propulsion plant

• 7 kg fuel cell propulsion system (with fuel and cooling)

- = Specific energy of 1100 Wh/kg for compressed H₂
- 26 hours of flight at 300 W

•Compare to high energy Lithium battery

- = Specific energy of 200 Wh/kg
- 4.8 hours of flight at 300 W from 6 kg of battery
- OR <u>30 kg</u> needed to fly for 24 hours at 300 W

•<u>Theoretical 3x endurance increase with liquid hydrogen over</u> <u>compressed hydrogen</u>

- <u>7 kg</u> fuel cell propulsion system (with fuel and cooling) = Specific energy of 3000 Wh/kg for liquid H₂
- 3 days of flight at 300 W

LH2 Design: nested aluminum tanks

- Vacuum between 2 aluminum spheres
- Minimize heat conduction between the 2 spheres with multilayer insulation (MLI)
- Design with appropriate boil off volume, etc.
- Similar designs looked at for automotive and high altitude long endurance UAVs

Stroman, et al., Int. J. Hydrogen Energy, vol 39 (2014)

U.S. NAVAL RESEARCH LABORATORY Fueling methodology

1000 L dewar \rightarrow 100 L DOT certified transfer dewar (@ NRL)

100 L transfer dewar \rightarrow 22 L flight dewar (@ airfield) Use He to inert system, then drive LH₂ into flight tank ~50% of LH₂ boils off to cool the flight tank

- Safety:
 - Ground everything
 - Nomex suit, etc.

U.S. NAVAL RESEARCH LABORATORY

48-h flight 16-18 April 2013

Significant LH₂ loss due to heat leak

Options: decrease LH₂ boil off through increased insulation (increased volume & weight) Fly at very cold temperatures. *NRL does not recommended LH2.*

U.S. Naval Research Laboratory

U.S. NAVAL RESEARCH LABORATORY

New: NRL's 1.5 to 3 KW fuel cells Stamped metal bipolar plates

Leverage "automotive" technology for stamped bipolar plates

U.S. Naval Research Laboratory

U.S. NAVAL LABORATORY In field hydrogen fueling

Present method is to refuel from commercial bottles of 6000 psi H2. Takes about 2 minutes

Look at different technologies for in field fueling

U.S. NAVAL RESEARCH LABORATORY MILLENNING Appliance

Specification	Value
Max Pressure	410 bar (6,000 psig)
Production rate	2 kg/day

Advantages of mech. compression and alkaline electrolysis

- Relatively inexpensive— both mech.
 compression and electrolysis
- Mature technology
- Efficient???

Conclusions:

- System is robust worked "right out of the box"
- System was designed for cost and simplicity
- Mechanical compressor requires overhaul every 300h

U.S. NAVAL RESEARCH LABORATORY HYET Electrochemical Compression

HyET Hydrogen

SpecificationValueMax Pressure410 bar (6,000 psig)Production rate2 kg/day

Advantages of e-chem compression

- Silent operation
- Purification
- No moving parts
- Longer lifetime???

Hydrogen fuel cells for unmanned undersea vehicle propulsion

PRIME 2016/230th ECS Meeting, October 2-7, 2016, Honolulu, Hawaii

U.S. NAVAL RESEARCH LABORATORY

What is the best power system for a UUV?

from: Large Displacement Unmanned Undersea Vehicle Innovative Naval Prototype Industry Day, March 10, 2011.

> Short bursts of 37 kW with 1.5 kW base load Looks ideal for hybrid small fuel cell (~ 5kW) + batteries

If future missions determine that high power is needed for longer periods... Small fuel cell with battery not an option.

U.S. NAVAL Automotive fuel cells commercially available

GM Project Driveway Fuel Cell Powercube

GM Next Generation Fuel Cell Powercube

- Automotive fuel cells nominally 93 kW
- NRL-ONR program based around General Motors fuel cell system
- GM has demonstrated over 3 million road miles on "4.5" system used in Chevy Equinox/Project Driveway
- GM moving to smaller system with Honda

ABORATORY

Fuel cell power train

Much work needed on power distribution

- Safety
- Power arbitration of battery and motor with fuel cell
 - Fuel cell must be ready to respond to changes in load

- Air independent brass board system developed
 - 500 h (3 week) operation of fuel cell in hybrid mode
 - Additional 1000 h under water operation
 - Full demonstration of system in Hydranox vehicle
 - Prototype for fuel cell power train
 - end-to-end demonstration of all of the controls for the full power hybrid power train in a fully submerged vehicle while operating the motor/propeller and control surfaces.
- Parallel effort on fueling structure with H2 and O2.
 - System under test at NASA White Sands, NM

Acknowledgements

UAV work: Michele Anderson and Richard Carlin, ONR Code 33 UUV work: Dan Deitz and Jon Erickson, ONR Code 32