FUEL CELL COLLABORATION BETWEEN GM & U.S. ARMY CCDC GVSC

March 19, 2019

Christopher Colquitt

HYDROTEC

CCDC GVSC GM FUEL CELL COLLABORATION 2004-2019

2005 Chevrolet Silverado with Two Fuel Cell Systems & Drive Motors

For CCDC GVSC:

- Ability to evaluate/implement advanced FC technology
- Fuel cells provides quiet operation, exportable power, aggressive off-road mobility & water production

For GM:

- Opportunity to validate technology in unique environments
- Additional production volume faster technology advancements

2018 to Present Battlefield Capable Hydrogen Production, distribution and dispensing system. Build of one Silverado ZH2 fuel cell electric vehicle.

2008-2012 Ten Fuel Cell Chevrolet Equinoxes at Fort Belvoir, West Point and Schofield Barracks

2012 to Present Three Fuel Cell Test and Development Stands at CCDC GVSC

2016-2018 Chevrolet Colorado ZH2 Fuel Cell Electric Vehicle

2017 to Present SURUS Fuel Cell Powered Autonomous Vehicle

U.S. ARMY FUEL CELL OPPORTUNITIES CRAWL-WALK-RUN STRATEGY

ZH2 & SURUS – Development Platforms

Electrified Tank- Long Term

Development Objectives:

- Refine & Field Test
- Down Range Evaluation
- Dual Drive Motor Capability
- Off-Road Autonomous Controls
- Exportable Power
- Water Capture System
- Refueling Infrastructure Demo

- **Autonomous Capability**
- Establish Usage Profiles
- Develop Mission Specific Applications
- Four Wheel Steer
- Leader Follower

- Incorporate ZH2 & SURUS Technologies
- Achieve Fully Armored Vehicle with Quiet Operation & Stationary Power Generation

ARMY END-GAME GOAL

HYDROGEN FUEL CELL SOLUTIONS

Fuel Cell Product Evolution

SPECIFICATIONS	GENO FUEL CELL EQUINOX (2006)	GEN1 (2011)	GEN2 (2017)
NET POWER	93 KW	85-92 kW	80kW
DURABILITY	30K MILES @ 1,500 HOURS	150K MILES @ 5,500 HOURS	150K MILES @ 8,450 HOURS
MASS	240 kg	120 kg	LESS THAN 120kg
BIPOLAR PLATE	MOLDED COMPOSITE	STAMPED STAINLESS STEEL	STAMPED STAINLESS STEEL
PRECIOUS METAL	80 GPT	30 G PT	LESS THAN 15 G PT
INTEGRATION	SEMI-INTEGRATED; 440 CELLS	HIGHLY INTEGRATED; 320 CELLS	HIGHLY INTEGRATED ; 304 CELLS
SIMPLIFICATION	> 30 SENSORS	~ 15 SENSORS	~15 SENSORS
COST PER UNIT	BASELINE		11

Fuel Cell Manufacturing Investment

GENERAL MOTORS

HONDA

OBJECTIVE: Scale, Increased Speed, Maximized Learnings

- 50:50 Manufacturing Joint Venture (GM & Honda)
- Product based upon shared Gen 2 development program
- Announced January 30, 2017
- Manufacturing Location: Brownstown Township, MI
- \$85 Million initial investment, creating new manufacturing jobs
- Production equipment currently being developed & installed
- Extensive automation

HYDR

- Cost reduction through design iterations & scale economies
- Technology becoming affordable for automotive applications

HYDROGEN

SOLUTIONS

Electrified Propulsion Application Map

REFUELING / RECHARGING TIME

GASOLINE LESS THAN 3 MINUTES TO FILL 100% AVERAGE 30MPG 150 MILES/MINUTE

HYDROGEN LESS THAN 3 MINUTES TO FILL 100% AVERAGE 67 MPGe 100 MILES/MINUTE

BATTERY ELECTRIC SUPERCHARGE 30 MINUTES TO FILL 80% 119 MPGe (BOLT EV) 6 MILES/MINUTE

ENERGY STORAGE DENSITY DRIVERS

HYDROGEN

FUEL CELL SOLUTIONS

HYDR®TEC

Reducing Convoys & Associated Risks

Major Convoy Payloads

- JP8 Fuel
- Water
- Ammunition
- Power generation systems
- Mission-critical equipment
- Vehicle repair parts
- People

Concepts and Technologies with Solutions from GM

- Fuel cell Propulsion
- Electrification
- Autonomous Driving (L/F)
- Exportable Electric Power
- Vehicle Modularity

- ✓ Greatly increasing efficiency✓ Reduce Detectability through
- Noise Reduction

CELL SOLUTIONS

- ✓ Fast re-fueling
- ✓ Saving Lives

ZERO EMISSIONS + MAXIMUM CAPABILITY

HYDROGEN

"Advanced propulsions technologies like fuel cell and autonomous are critically required by the Army to minimize risk to the warfighter as a result of the current need for large convoys of inefficient manned vehicles." • Major General Robert Dyess (R), Deputy Director Army Capabilities Integration Center

GM FCEV Development – Colorado ZH2

Uniquely Styled

Performance

Range Up to 200 miles

Acceleration (0 - 60 mph) 17 seconds

Top speed 62 mph

FUEL EFFICIENT OFF-ROAD 4WD SPECIALLY-TUNED SUSPENSION FOR OFF-ROAD OPERATION QUIET OPERATION WITH 25kW EXPORTABLE POWER TAKE-OFF (EPTO) ZERO EMISSIONS WITH WATER BYPRODUCT (~2 GALLONS PER HOUR)

ZERO EMISSIONS + MAXIMUM CAPABILITY

FUEL CELL SOLUTIONS

HYDROGEN

ZH2 Heat Signature Testing

Sierra Gasoline Engine

ZH2 Hydrogen Fuel Cell

GM FCEV DEVELOPMENT – SILVERADO ZH2

ZH2 ROLLING CHASSIS DISPLAYED @ AUSA 2018

HYDROGEN FUEL CELL SOLUTIONS

ZERO EMISSIONS + MAXIMUM CAPABILITY

SILVERADO ZH2 ANIMATION

VIDEO LOCATION:

https://www.gmdefensellc.com/

Hydrogen Infrastructure - Commercial

CALIFORNIA RETAIL HYDROGEN INFRASTRUCTURE

Centralized Fueling Concept

AIR EMISSIONS AT PORTS

DIESEL PARTICULATES – DIESEL PARTICULATE MATTER (DPM) IS PART OF THE DIESEL EXHAUST MIXTURE NITROGEN OXIDES – NOX ARE A GROUP OF HIGHLY REACTIVE GASES PRODUCED DURING COMBUSTION SULFUR OXIDES – SOX, RESULT FROM BURNING OF COAL AND OIL

HESE EMISSIONS HAVE BEEN IDENTIFIED AS TODIC MATERIALS WITH POTENTIAL TO CAUSE CARCER, PREMATURE DEATH, AND RESPIRATORY PROBLEMS

Hydrogen Generation and Distribution Concept

Concept: Convert any feedstock into hydrogen and utilize "hub and spoke" model for hydrogen production, storage, and distribution. Showcase concept of bringing fuel to FCEVs for operations in austere environments

ZERO EMISSIONS + MAXIMUM CAPABILITY

FUEL CELL SOLUTIONS

HYDROGEN

HYDROGEN ECOSYSTEM ANIMATION

VIDEO LOCATION:

https://www.gmdefensellc.com/

ONE CHASSIS

ONE PROPULSION SYSTEM

MANY VEHICLE SOLUTIONS

SURUS TECHNOLOGY

SCALABLE MULTI-PLATFORM FUEL CELL ARRAY

Highly scalable fuel cell array

- For propulsion or stationary power
- Utilize commercial component designs and manufacturing methods

Design and Controls Focus:

- Modularity
- Maximize common components
- Fault tolerance
- High power density
- Extreme operating environments
- Field serviceable

BOP

BOP

BOP = Balance of Plant

8x kW

BOP

4x kW

BOP