

Hydrogen and Fuel Cell Technologies Office Update

Dr. Sunita Satyapal, Director, Fuel Cell Technologies Office

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Meeting March 9, 2020– Washington DC

Agenda

- HTAC Scope
 - Membership
 - Energy Policy Act (EPACT) 2005 Title VIII
- Program Updates
 - Budget, solicitations and recent highlights
 - Requests for input and discussion- Multiyear Plan, Center for Hydrogen Safety, National Lab Facilities
- Additional Information
 - Responses to HTAC recommendations, Congressional language, Organizational updates

2020 HTAC Membership

HTAC Member and Affiliation	Expertise	HTAC Member and Affiliation	Expertise	
Aszklar, Henry Independent Energy Consultant	Energy Project Development & Financing	Marsh, Andrew Plug Power	Stationary and Transportation Fuel Cell Technology Manufacturing	
Freese, Charles F. (Chair) General Motors Company	Automotive Companies	Mount, Robert Power Innovations	Power management technology and integration	
Hebner, Robert	Advanced power and energy technology R&D, government-	Nocera, Daniel Harvard University	Hydrogen Production R&D	
University of Texas at Austin	industry partnerships, and tech- to-market strategies	Novachek, Frank Xcel Energy	Utilities (Electricity and Natural Gas)	
Irvin, Nick Southern Company	Utilities/Advanced Energy Systems R&D	Powell, Joseph (Vice Chair) Shell Global Solutions	Fuels Production and R&D	
Koyama, Harol H2 PowerTech	Stationary Power and Markets	Rogers, Paul The Adjutant General of the Michigan National	Military Hydrogen and Fuel Cell	
Leggett, Paul	Venture Canital / Investment	Guard and Director of Military and Veterans Affairs	Applications / R&D	
Mithril Capital Management, LLC		Rumsey Jennifer	Medium- and heavy-duty engine	
Leo, Anthony FuelCell Energy	Stationary Fuel Cell and Hydrogen Production Technology Manufacturing	Scott, Janea California Energy Commission	State Energy Policies and Regulations	
Markowitz, Morry Fuel Cell and Hydrogen Energy Association (FCHEA)	Hydrogen and Fuel Cells Industry Association	Thompson, Levi University of Delaware	Catalytic and Absorbent Materials R&D	

Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) Scope

To advise the Secretary of Energy on:

- 1. The implementation of programs and activities under Title VIII of EPACT
- 2. The safety, economical, and environmental consequences of fuel cells and technologies to produce, distribute, deliver, store or use hydrogen energy
- 3. The DOE Hydrogen & Fuel Cells Program Plan

- 1. Enable and promote comprehensive **development**, **demonstration**, and **commercialization** of H₂ and fuel cells with industry
- 2. Make **critical public investments** in building strong links to private industry, universities and National Labs to expand innovation and industrial growth
- 3. Build a mature H_2 economy for **fuel diversity** in the U.S.
- 4. Decrease the **dependency on foreign oil & emissions** and enhance energy security
- 5. Create, strengthen, and protect a sustainable national energy economy

Snapshot of Hydrogen and Fuel Cells Applications in the U.S.

Key Programmatic Area: H2@Scale

CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

Funding and Impact

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

FUEL CELL TECHNOLOGIES OFFICE

Budget

Fuel Cell Technologies Office (FCTO) within Energy Efficiency and Renewable Energy (EERE)

	FY 2018	FY 2019	FY 2020
Fuel Cell R&D	32,000	30,000	26,000
Hydrogen Fuel R&D	54,000	39,000	45,000
Hydrogen Infrastructure R&D*	-	21,000	25,000
Technology Acceleration	19,000	21,000	41,000
Safety, Codes, and Standards	7,000	7,000	10,000
Systems Analysis	3,000	2,000	3,000
Total	\$115,000	\$120,000	\$150,000

*Will be moved under Hydrogen Fuel R&D in FY 2021

Fuel Cell Technologies Office Hydrogen and Fuel Cells Breakdown FY 2020

DOE Hydrogen and Fuel Cells FY 2020 Appropriations

DOE Office	Funding (in thousands)
EERE (FCTO)	\$150,000
Fossil Energy (SOFC)	\$30,000
Nuclear Energy (coordinated with FCTO)	\$11,000

• Office of Science, Basic Energy Sciences Funding for projects relevant to H₂ and fuel cells (e.g. catalysis, etc.) was \$20.5 M in FY 19, TBD in FY 20

• ARPA-E- Funding is based on specific program selected each year: TBD in FY 20

Up to \$64M announced under H2@Scale New Markets Funding Opportunity

Topic Area	Total Funding Level	Anticipated # of Awards	Max. Federal Funding per Award	Max. Project Duration (yrs)	Min Required Non- Federal Cost Share %
Topic 1: Electrolyzer Manufacturing R&D	\$15M	Up to 4	\$5M	3	20%
Topic 2: Advanced Carbon Fiber for Compressed Gas Storage Tanks	\$15M	Up to 3	\$9M	5	20%
Topic 3A: Fuel Cell R&D for Heavy-Duty Applications - Membranes for Heavy-Duty Applications	\$4M	Up to 4	\$1M	3	20%
Topic 3B: Fuel Cell R&D for Heavy-Duty Applications - Domestically Manufactured Fuel Cells for Heavy-Duty Applications	\$6M	2 to 3	\$3M	3	20%
Topic 4: H2@Scale New Markets R&D- HySteel	\$8M	1 to 2	\$8M	3	20%
Topic 5A: H2@Scale New Markets Demonstrations -Maritime Demonstrations	\$8M	1 to 2	\$8M	3	50%
Topic 5B: H2@Scale New Markets Demonstrations - Data Center Demonstrations	\$6M	1 to 2	\$6M	3	50%
Topic 6: Training and Workforce Development for Emerging Hydrogen Technologies	Up to \$2M	1	\$2M	5	0%
Total:	Up to \$64M	Up to 21			

FOA Application Requirements (DE-FOA-0002229 posted online)

- Interested applicants are encouraged to submit application materials through EERE Exchange at https://eere-Exchange.energy.gov, EERE's online application portal
- Applicants needed to submit a **Concept Paper by 5:00pm ET Feb 25, 2020** to be eligible to submit a Full Application

Criteria for Assessing Applications				
Criterion 1: Merit, Innovation, and Impact (50%)	 Merit and Innovation Impact of Technology Advancement 			
Criterion 2: Project Research and Market Transformation Plan (30%)	 Research Approach, Workplan and SOPO (Statement of project objectives) Identification of Risks Baseline, Metrics, and Deliverables Market Transformation Plan (NOT applicable to Topic Area 6) Impact Assessment (applicable ONLY to Topic Area 6) 			
Criterion 3: Team and Resources (20%)	 Ability to address all aspects of project with high probability of success Sufficiency of facilities to support the work Ability to facilitate and expedite further development and commercial deployment of deliverables Level of participation by project participants Reasonableness of the budget and spend plan 			

Opportunity for Funding through Nuclear Energy FOA

Nuclear Energy (DE-FOA-0001817)

- To apply, go to: <u>https://www.id.energy.gov/NEWS/FO</u> <u>A/FOAOpportunities/FOA.htm</u>
- Frequently Asked Questions: <u>www.id.doe.gov</u>

*New cycle open – Application due June 30 2020

How Hydrogen and Nuclear Synergize

- Heat and electricity from reactors can produce hydrogen to be used as a fuel or industrial commodity, in energy storage, or for other industrial purposes
- Hydrogen can optimize nuclear production when generation exceeds load on the grid
- To learn more about synergies between hydrogen and nuclear, go to https://www.energy.gov/ne/articles/could-hydrogen-help-save-nuclear

Interagency Collaboration to Enable Technology in Emergency Relief

U.S. Department of Energy and U.S. Army Issue Solicitation to Develop H2Rescue

FEBRUARY 3, 2020

Press Release

https://www.energy.gov/eere/fuelcells/articles/us-departmentenergy-and-us-army-issue-solicitation-develop-h2rescue

Opportunity Number and Due Date to Apply to Solicitation W81EWF20FOA0001 - March 31, 2020

- Example of interagency collaboration (DoD and DOE)
- **Up to \$1M** (requires equal match of industry contributions)
- Truck to run on fuel cell/battery and hydrogen and provide power, heat and potable water

Announced February 2020: Industry and Government Collaboration Supporting American's Ingenuity and Enabling Technology Validation in Washington D.C.

The \$1M H-Prize Challenge Incentivized Innovation in Community H₂ Fueling

The prize-winning SimpleFuel[®] team developed an electrolyzer-based appliance capable of refueling a 700 bar fuel cell vehicle at a rate of 1 kg-H₂ in less than 15 minutes

U.S. Department of Energy Joins Industry to Collaborate on Transportation Technology Validation and Assessment

Byundai Motor Group Executive Vice Chairman Euisun Chung (left) and Under Secretary of Energy Mark W. Menezes (right,

DOE, Hyundai and SimpleFuel collaboration will include:

- Data collection and validation on **five** Hyundai Nexo fuel cell cars
- Installation of SimpleFuel unit to support refueling and identify infrastructure R&D gaps

Importance of Data Collection and Analysis to Guide

Example from hydrogen infrastructure data collection, demonstrating challenges with dispenser, compressor, chiller, and gas management

Safety Incident Reports by Type

An Incident is an event that results in:

- a lost time accident and/or injury to personnel

- damage/unplanned downtime for project equipment, facilities or property

- impact to the public or environment

- any hydrogen release that unintentionally ignites

- release of any volatile, hydrogen containing compound (including the hydrocarbons used as common fuels)

A Near Miss is:

- an event that under slightly different circumstances could have become an incident

- any hydrogen release sufficient to sustain a flame if ignited

A Minor H2 Leak is:

- an unplanned hydrogen release insufficient to sustain a flame, and does not accumulate in sufficient quantity to ignite

NREL cdpRETAIL_infr_32 Created: Mar-18-19 12:42 PM | Data Range: 2014Q3-2018Q4

Contact:

techval@nrel.gov

-or-

fuelcells@ee.doe.gov

Cause and Effect Analysis of Hydrogen Infrastructure Incidents

Example of Insight on Hydrogen Components Safety

Figure A2. pressure relief valve components: failed nozzle subassembly (A1 and A2 inlet base (B); disk subassembly (C); set spring (D).

Figure A5. Polished cross sections of (a) functioning nozzle and (b) failed nozzle. The arrows indicate the internal corner associated with failure of the nozzle.

Pressure relief valve failure caused hydrogen release - led to safety concerns and evacuation

Type 440C Stainless Not Suitable For This Application

Cross-cutting Materials Compatibility R&D

H-Mat Consortium launched in FY18 to conduct early-stage R&D on hydrogen effects on polymers and metals.

Focus of current activities include:

- 1) Reduce expansion of seals in hydrogen by 50%
- 2) Enhance life of vessels by 50% through improved understanding of crack nucleation.
- 3) Enhance fracture toughness of high-strength (>950 MPa) steels by 50%.

For more information:

Website: energy.gov/eere/fuelcells/h-mat-hydrogen-materials-consortium Email: h-matinfo@pnnl.gov U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Example of Collaboration: Global Center for H₂ Safety (CHS)

IPHE Steering Committee action: Increase awareness of safety partnership. Promotes safe operation, handling and use of hydrogen across all applications.

www.aiche.org/CHS

Fact Sheet Translated into Japanese 水素安全センター CENTER FOR Connecting a Global Community 水素自動車とその水素ステーションは安全に使用できる: 水素は目新しいものではなく、50年以上にわたって産業界で広く使用されてお り、安全に使用できるように基準、標準、設計手法などが整備されてきた Be あらゆる燃料はエネルギーを持っており、どれも不適切に取り扱うと危険であ、 他の燃料と同様、水素もその特性に基づいて設計されたシステムで慎重に使用 する必要がある。水素ステーションと燃料電池車(FCEV)は、安全確保のために リチウム AUU94 確立された安全基準に基づいて設計されている。 9.0121831 燃料電池車は、従来の内燃式エンジンよりもクリーンで効率的である。タンクカ Na Mg ら供給された水素と空気中の酸素から電気を発生させ、排出されるのは水蒸気 だけである。 ナトリウム マグネシウム 輸送分野の水素利用: 水素は、石油、風力、太陽光、その他のエネルギー資源 から作られている。水素はエネルギーキャリアーとし て注目されている。 汚染物質、炭素排出量、騒音の 削減手段として、トラックや船舶 にゼロエミッションの燃料電池 活用への関心が急速に高まっ ている。 化学工業 石油捕製 電子工業 医薬品業界 60 輛 燃料電池電車 世界中では創 産業用途として生産されている。 11,000台 1,991億米ドル 公道上の水素自動車台数 2023年見込みの売上規模 2018年末編 20,000 台 水素燃料のフォークリフト 2023年目込み台湾 2018年実績

汚染物質、炭素排出量、騒音の

削減手段として、トラックや船舶 にゼロエミッションの燃料電池 活用への関心が急速に高まっ

ている。

60 輛 燃料雪池雪車

Specific Areas of Input Requested

- 1) Center for Hydrogen Safety
 - Follow up planned through subcommittee
- 2) Plans/Roadmaps
 - Multiyear Program Plan under revision
- 3) Feedback on National Lab facility plans
- 4) Collaboration & Leveraging Examples
 - Opportunities for collaboration on H2@Scale, especially for new applications (e.g., HDV, marine, rail, aviation, data centers, etc.)
 - Global Action Agenda/Tokyo Statement and IPHE priorities
 - Prize concepts
 - Training and Workforce development

Multi-year Plan Will Include Applications Across Sectors

	Chemicals and Industrial Applications	Power Generation and Energy Storage	Transportation Fuel
Existing, growing demands	Oil Refining Ammonia Methanol	Back-Up Power and Distributed Generation (e.g. datacenters)	Material Handling/Forklifts Buses LDVs
Emerging future demands	Steel Industrial Heat (e.g. cement) Biofuels Upgrading Synthetic Fuels	Hydrogen Blending Flexible Power Generation Seasonal Energy Storage	M/HDVs Rail Maritime Aviation

Challenges and Opportunities for Hydrogen in Chemical and Industrial Processes - Draft

	Sector	Current Role of Hydrogen	Barriers	Opportunities/Benefits
SL	Oil Refining	Used to remove impurities (e.g., sulfur) and upgrade heavy crude	Cost of diverse methods of hydrogen supply (e.g. beyond SMR)	Lowering point-source emissions
Chemicals and Industrial Applicatio	Chemicals	Essential feedstock in ammonia and methanol production, used in other smaller-scale processes	Cost of diverse methods of hydrogen supply (e.g. beyond SMR)	Innovative, scalable production technologies
	Steel Production	Hydrogen-containing syngas used for iron refining	Cost of diverse methods of hydrogen supply (e.g. beyond SMR); Reliability and efficiency of existing processes that can use high concentrations of hydrogen	Innovative approaches to hydrogen use that enhance process efficiency; Domestic competitiveness Emissions reduction
	Industrial Heat	Limited to hydrogen-containing by-product gases used for process heat	Availability of cost-competitive hydrogen for heating; Availability of appliances that can operate on high concentrations of hydrogen	Reduce emissions from industrial processes; Use existing natural gas infrastructure for gigawatt-hours of energy storage
	Synthetic Fuels	Fossil-based methods are well established (e.g., methanol synthesis) Hydrogen primarily used in-situ in existing fossil-based processes Demonstrations of renewable synthetic fuel production	Availability of low-cost hydrogen supply and cost-competitive, efficient production methods	High energy density applications (e.g. aviation); Potential as drop-in fuels leveraging existing infrastructure Potential for emissions reductions

Challenges and Opportunities for Hydrogen in Power Generation and Energy Storage - Draft

	Sector	Current Role of Hydrogen	Barriers	Opportunities/Benefits
Energy Storage	Back Up and Off Grid Power	Hydrogen primarily used in-situ (e.g., natural gas reforming for fuel cell back up power)	Footprint of storage infrastructure Cost of hydrogen fuel	Emissions reductions; resiliency
	Hydrogen Blending	Up to 20% blending in ongoing tests and demonstrations in Europe	Availability of low-cost hydrogen supply; Higher percentage blends will require upgrades to infrastructure and end uses	Leverages existing natural gas infrastructure and/or turbines and appliances
Power Generation and E	(Flexible) Power Generation	 >200 MW of stationary fuel cell power shipped worldwide (though hydrogen typically produced in-situ) Prototype combustion turbines that operate on blends of hydrogen have been developed and tested 	Availability of low-cost hydrogen supply; Commercial availability of components that can be used to enable high percentages of hydrogen in combustion turbines	Supports higher penetrations of intermittent renewable energy on the grid by providing demand response and other grid services Emissions reductions
	Seasonal Energy Storage	Bulk storage technologies have been demonstrated in petrochemical buffering applications	Low round-trip efficiency Limited market for long-duration energy storage	Supports higher penetrations of renewable energy on the grid

Challenges and Opportunities for Hydrogen as Transportation Fuel- Draft

	Sector	Current Role of Hydrogen	Barriers	Opportunities/Benefits
ation Fuels	Material Handling Equipment	>30,000 MHEs across the US	Investment in fueling infrastructure	Fast fill-time; Performance in warehouse environments (e.g., refrigerated conditions)
	Buses & M/HDV	> 30 buses across the U.S.> 16,000 trucks ordered	High TCO relative to incumbent (diesel), due to cost of hydrogen fuel, cost of fuel cell stack, and cost of hydrogen storage onboard vehicle	Fast fill-times and long range
	LDVs	Over 8,300 vehicles sold or leased; Over 40 retail stations in California	High TCO relative to incumbent, due to cost of hydrogen fuel, cost of fuel cell stack, and cost of hydrogen storage onboard vehicle	Range, energy density for advanced vehicles (e.g. ridesharing, autonomous capabilities)
port	Rail	Prototype demonstrations in Germany	Low-cost incumbent technology; Capital intensive	Clustering of demand with regional opportunities
Trans	Maritime	Ongoing demonstration projects for marine vessels and port-side equipment	Volumetric storage requirements on ocean-going vessels; high cost of hydrogen fuel compared to alternatives	Clustering of demand with regional opportunities; Regulatory requirement for desulfurization of marine fuels
	Aviation	Prototypes under R&D	Volumetric storage requirements on aircraft; high cost of hydrogen fuel compared to alternatives	Short flights, air taxis, drones

Hydrogen Supply Methods based on Facility-Level Hydrogen Demand- Draft

	Sector	Approximate Range of Hydrogen Consumption Per Day Per Site/Facility	Hydrogen Supply Methods Possible
q	Methanol	500-1,000 tonnes/day	On-site production, pipeline
ablishe		100-500 tonnes/day	
Esta			
ing			
erg			
E			
	:		

[1] Slide 13 from: https://www.energy.gov/sites/prod/files/2019/10/f68/fcto-h2-at-ports-workshop-2019-viii3-steele.pdf

^[2] https://www.nrel.gov/docs/fy20osti/75355.pdf

^[3] Based on ANL analysis of Chicago area

Hydrogen Supply by Sector – For Discussion

Potential future demands

*Liquid delivery also employed for smaller consumers requiring high purity hydrogen (e.g., transportation applications) †The use of hydrogen carriers depends more on distance (e.g., for international trade) than facility-level demand

Example: Fuel Cell Status vs Targets for LDV Case- to be completed for HDV and other applications- DOE updates underway

Advanced Research on Integrated Energy Systems (ARIES) Initiative

ARIES Vision (NREL, in collaboration with other labs and industry)

- Address the fundamental challenges of how to scale up the physical size of new energy technologies and the number of interconnected devices into larger systems.
- Determine how the integration of multiple diverse technologies into future energy systems can provide a range of benefits including improved efficiency, security, and resiliency, lower costs, and greater customer choice.

Key	y Questions:
1)	What key benefits will this new capability provide to
	you and/or your organization?
2)	What other R&D challenges should be addressed
	that will ensure success and impact for industry?
3)	Are the capabilities described above relevant to
	stakeholders?
4)	Is there an interest on the part of owners and
	operators of commercial or large-scale energy
	generation in partnering?
5)	What other facilities, equipment, and capabilities
	may be required?
6)	What technology innovations and advances can be
	envisioned with the availability of ARIES?

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

FUEL CELL TECHNOLOGIES OFFICE

Student Internship Opportunities

Minority Educational Institution Student Partnership Program Internships (MEISPP)

- 8 10 week summer internships with DOE and national laboratories
- Helps students gain professional and technical career experience while working sideby-side with an assigned mentor
- Includes lodging, round trip airfare, and student stipends

EERE Student Volunteer Internship Program (SVIP)

- Internships throughout the year at its Washington, D.C. Headquarters (HQ) and the Golden Field Office (GFO) located in Golden, Colorado
- Academic credit and/or stipends for federal internships at some colleges and universities
- Does not include lodging, round trip airfare, and student stipends

For eligibility & instructions:

MEISPP

https://www.energy.gov/diversity/servi ces/minority-education-andcommunity-development/minorityeducational-institution-0

SVIP

https://www.energy.gov/eere/education /eere-student-volunteer-internshipprogram-svip

Potential Career Opportunities in Hydrogen and Fuel Cells

Fellow roles in:

- Hydrogen storage (e.g. composite materials, carbon fiber)
- Hydrogen infrastructure R&D (e.g. materials compatibility)
- Hydrogen fuel R&D (e.g. hydrogen production)

Opportunity Title	URL	Opportunity #	Org	Deadline
Development of Advanced Multi-Physics Modeling Techniques for Solid Oxide Fuel Cells-FRP	https://www.zintellect.com /Opportunity/Details/NETL- 2019-FRP-Hackett-2	NETL-2019-FRP-Hackett-2	NETL	Mar 31 2020 11:59 PM EST
Fuel Cells Technologies Office (FCTO) opportunity in Hydrogen Storage	https://www.zintellect.com /Opportunity/Details/DOE- EERE-STP-FCT-2020-1801	DOE-EERE-STP-FCT-2020- 1801	FCTO	Open till filled (target: mid 2020)
FCTO Hydrogen Infrastructure Technologies Opportunity	https://www.zintellect.com /Opportunity/Details/DOE- EERE-STP-FCT-2020-1802	DOE-EERE-STP-FCT-2020- 1802	FCTO	Open till filled (target: mid 2020)
FCTO Opportunity in Fuel Cell Research and Development	https://www.zintellect.com /Opportunity/Details/EERE- STP-FCT-2019-1800	EERE-STP-FCT-2019-1800	FCTO	Open till filled (target: mid 2020)

Areas:

- Engineering
- Chemistry, Materials
- Project Management
- Safety, codes, standards

For More Info:

DOE Fuel Cell Technologies Office fuelcells@ee.doe.gov

Oak Ridge Institute for Science and Education https://orise.orau.gov/stem/internshipsfellowships-research-opportunities/index.html

Stakeholder Engagement to Support Early Stage R&D

National Hydrogen & Workshops enabling Safety Information and **Fuel Cell Day** H2@scale **Training Resources** October 8 or 10/8 Rick Perry 📀 @SecretaryPerry · Oct 8 I'm proud of @ENERGY's innovative work to advance hydrogen and fuel cell H2tools.org technologies on #HydrogenDay and every day, #hydrogennow #fuelcellsnov • AMR: May 19-21, **INCREASE YOUR** Crystal City, VA • H2@Airports: April **Download for free at:** 7-8, 2020 in Q 15 17 34 · 1. energy.gov/eere/fuelcells/downloads/i Arlington, VA ncrease-your-h2iq-training-resource Sign up to receive hydrogen and fuel cell updates

www.energy.gov/eere/fuelcells/fuel-cell-technologies-office-newsletter

Learn more at: energy.gov/eere/fuelcells

FUEL CELL TECHNOLOGIES OFFICE

Thank You & Additional Information

energy.gov/eere/fuelcells

HTAC Recommendations Being Addressed

Recommendations	from 2019 HTAC	Actions Taken (Examples)
Annual Report		

Enhance funding of systems modeling
studies for H2@Scale to identify best
opportunities for integration of hydrogen
into the U.S. energy infrastructure for
energy transmission, storage, and dispatch

Enhanced H2@Scale modeling and analysis activities, with plans to publish at least three reports including H2 supply and demand across sectors and H2 resource availability analysis. CRADA projects underway.

Conduct system analysis of future	Working through the U.S. DRIVE partnership to address the impact of
storage and vehicle cost to	advanced onboard hydrogen storage technologies and costs on future
understand what infrastructure	hydrogen infrastructure implementation.
investments are warranted	

Continue to conduct R&D

programs to reduce the cost of fuel cells, hydrogen storage, and delivery, and improve durability for commercial applications FY 19 FOA selections provide more than \$55 million to address H2@Scale. The FY 20 FOA announcement will provide up to \$64 million for projects aimed at lowering electrolyzer costs, reducing cost of compressed hydrogen storage, lowering fuel cell manufacturing costs, and expanding hydrogen and fuel cell markets. FCTO continues to support national laboratory-industry R&D projects through R&D consortia (**HydroGEN**, **HyMARC, ElectroCAT, and H-Mat**) and CRADA calls.

HTAC Recommendations Being Addressed

Recommendations from 2019 HTAC Annual Report	Actions Taken (Examples)
Increase emphasis on development and demonstration of solutions for <u>heavy duty transit, marine,</u> and aviation applications that are not readily served by battery electric systems	FY 2019 and 2020 FOAs included topics specific to medium- and heavy- duty trucks and maritime and data center applications (more than \$18 million awarded in FY 2019 to projects specifically targeting truck applications). Published R&D targets for Class 8 trucks in December 2019.
	ECTO continues to support standardization of codes and standards as

Continue <u>support for</u> <u>standardization of codes</u> <u>and best practices for safety</u> system design and approvals. FCTO continues to support standardization of codes and standards as well as global harmonization, including stable funding of approximately \$7 million per year to conduct R&D and provide national laboratory expertise to inform the development of consistent global standards and best practices. FY 2020 appropriations includes \$10 million for safety, codes, and standards. International harmonization activities also underway through IPHE Working Group.

HTAC Impact – Examples

- HTAC Annual Reports and Letters to DOE Secretary
 - 2007 to Current
- Subcommittee Outputs
 - Competitiveness (2019)
 - Communication & Outreach (2018) material online
 - Hydrogen Safety & Event Response (2017)
 - Manufacturing (2014)
- Other Examples
 - Input on Hydrogen Safety Panel and affiliation with AIChE
 - Input on H-Prize 1st commercial system exported to Japan, manufactured in the US

FY 2020 Congressional Language

HOUSE	SENATE	CONFERENCE
Within available funds, the Committee recommends \$35,000,000 for Technology Acceleration activities, of which \$5,000,000 is for industry-led manufacturing.	The Committee recommends \$35,000,000 for Technology Acceleration activities, including \$3,000,000 for manufacturing research and development, and \$7,000,000 for industry-led efforts to demonstrate a hydrogen-focused integrated renewable energy production, storage, transportation fuel distribution/retailing system, and fuel cell system deployment.	[House and Senate language stands] Within Technology Acceleration funds, \$5,000,000 is for industry-led manufacturing. [Senate language stands]
	Funding is included to support fuel cell and hydrogen technical and workforce development and training programs.	
The Committee recognizes the progress in breakthrough research and cost reduction for stationary, vehicle, motive, and portable power applications of fuel cell and hydrogen energy technology.		[Senate language stands]
The Committee recommends not less than \$7,000,000 for safety, codes, and standards.	The Committee further recommends \$10,000,000 for Safety, Codes, and Standards to maintain a robust program and engage State and local regulatory and code officials to support their technical needs relative to infrastructure and vehicle safety.	The agreement provides \$10,000,000 for safety, codes, and standards.
	The Department is encouraged to engage on codes and standards for developing fuel cell and hydrogen markets such as heavy-duty trucks. The Department is also encouraged to continue coordination between U.S. and international standard bodies to ensure there is	[Senate language stands, though 'encourage' is not considered directive language]
	one set of open [non-proprietary] global standards for fuel cell and hydrogen technologies.	[Senate language stands, though 'encourage' is not considered directive language]

FY 2020 Congressional Language

HOUSE	SENATE	CONFERENCE
	Within the amounts recommended, the Committee recommends \$49,000,000 for Hydrogen Fuel Research and Development for efforts to reduce the cost and improve the performance of hydrogen generation and storage systems, hydrogen measurement devices for fueling stations, hydrogen compressor components, and hydrogen station dispensing components.	The agreement provides \$45,000,000 for Hydrogen Fuel Research and Development.
Within available funds, \$10,000,000 to cost share the Office of Nuclear Energy hydrogen demonstration project. Within available funds, \$7,000,000 is to enable integrated energy systems using high and low temperature electrolyzers with the intent of advancing the H2@Scale concept.		Within available funds, the agreement provides \$7,000,000 to enable integrated energy systems using high- and low- temperature electrolyzers with the intent of advancing the H2@Scale concept and \$10,000,000 to cost share the Office of Nuclear Energy hydrogen demonstration project.
The Committee remains supportive of H2@Scale activities that	The Department shall continue to research novel onboard hydrogen tank systems, as well as trailer delivery systems to reduce cost of delivered hydrogen. Further, the Department is directed to support research and development activities that reduce the use of platinum group metals, provide	[Senate language stands] [House language stands, language is not considered directive
enable wide-scale hydrogen production and use in the United States to enable resiliency of power generation and transmission.	improvements in electrodes and membranes and balance- of-plant components and systems.	language]
The Committee encourages the Department to continue its work on high temperature electrolysis coupled with thermal systems.		

FY 2020 Congressional Language

HOUSE	SENATE	CONFERENCE
[No direction.]	The Committee recommends \$3,000,000 for Systems Analysis, including research on in-situ metrology for process control systems for manufacturing of key hydrogen system components.	[Senate language stands.]
[No direction.]	Within the amounts recommended, \$26,000,000 is recommended for Hydrogen Infrastructure Research and Development with emphasis on large-scale hydrogen production, including liquefaction plants, hydrogen storage, and development of hydrogen, including pipelines.	The agreement provides \$25,000,000 for Hydrogen Infrastructure R&D.
	Further, the Department is directed to continue the H2@Scale Initiative, which couples current research efforts within the program with new opportunities for using hydrogen to provide grid resiliency and advance a wide range of industrial processes for the production of fuels, chemicals, and materials.	[Senate language stands]
	The Committee encourages the Secretary to work with the Secretary of Transportation and industry on coordinating efforts to deploy hydrogen fueling infrastructure.	[Senate language stands, though 'encourage' is not considered directive language]
The Committee directs the Vehicle, Bioenergy, and Hydrogen and Fuel Cell Technologies offices to continue to work closely to develop common metrics to evaluate and compare the costs and energy consumption of advanced transportation technologies with existing technologies.	[No Direction.]	[House language stands.]
[No Direction.]	The Committee encourages regular consultation with industry to avoid duplication of private-sector activities and ensure retention of fuel cell technology and systems development in the United States.	[Senate language stands, though 'encourage' is not considered directive language]
U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENC	Y & RENEWABLE ENERGY FUEL CELL TECHNOLOGIES OFFICE	39

Hydrogen and Fuel Cell Technologies – FY 2021 Request

In FY 2021, the Hydrogen and Fuel Cell Program will support early stage R&D on novel hydrogen and fuel cell technologies to achieve application specific goals. For example: Medium and Heavy-Duty truck applications ultimate targets are:

- 30,000 hours fuel cell durability
- \$60/kW for fuel cell cost
- \$8/kW for onboard hydrogen storage costs

The program will continue to focus on the H2@Scale concept to enable affordable, reliable hydrogen generation, transport, storage and utilization across sectors with increased focus beyond light duty vehicles emphasizing diverse end uses including energy storage, transportation (trucks, marine, rail, aviation), chemicals (ammonia, synthetic fuels), backup power (emergency power, data centers), and industry (steel, iron making).

Subprogram	FY 2020 Enacted (\$K)	FY 2021 Request (\$K)	FY 2021 vs. FY 2020 (\$K)
Fuel Cell Technologies (Formerly Fuel Cell R&D)	26,000	8,000	-18,000
Hydrogen Technologies (Formerly Hydrogen Fuel R&D in FY20)	45,000	23,000	-22,000
Hydrogen Infrastructure R&D (Included in Hydrogen Technologies in FY21)	25,000	0	-25,000
Systems Development and Integration (Formerly Technology Acceleration in FY20)	41,000	10,000	-31,000
Safety, Codes and Standards (Included in Systems Development and Integration in FY21)	10,000	0	-10,000
Data, Modeling and Analysis (Formerly Systems Analysis in FY20)	3,000	1,000	-2,000
Total	150,000	42,000	-108,000

Fuel Cell Technologies Office Org Chart

FUEL CELL TECHNOLOGIES OFFICE