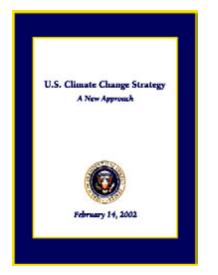
U.S. Approach to Climate Change

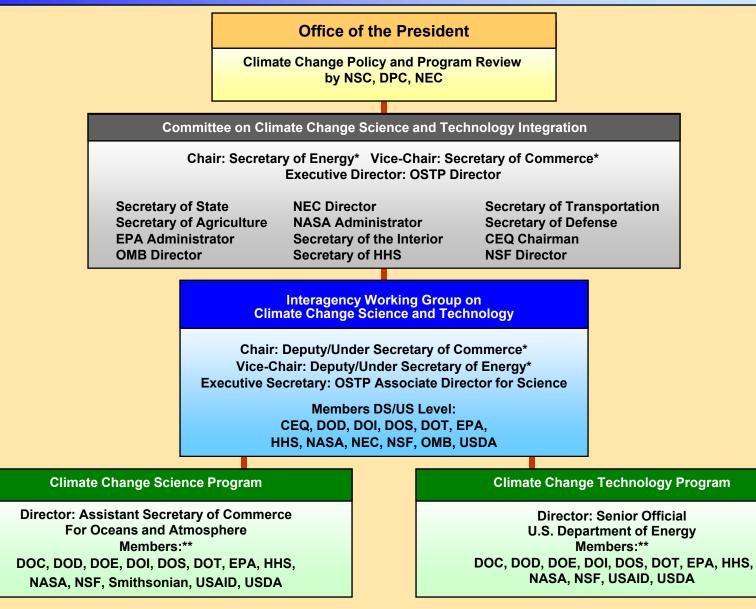

Dr. Robert C. Marlay Deputy Director, U.S. Climate Change Technology Program Office of Policy and International Affairs U.S. Department of Energy robert.marlay@hg.doe.gov

Hydrogen and Fuel Cell Technology Advisory Committee 19 September 2007 Washington, DC

Overview

U.S. Approach to Climate Change Advanced Technology Scenario Analysis Technology R&D Portfolio Analysis Supporting Policy and Measures International Cooperation Path Forward

U.S. Approach



I reaffirm America's commitment to the United Nations Framework Convention and its central goal, to stabilize atmospheric greenhouse gas concentrations at a level that will prevent dangerous human interference with the climate.

> President George W. Bush February 14, 2002

- U.S. approach to climate change harnesses the power of markets and technological innovation, maintains economic growth, and encourages global participation.
- Reaffirms U.S. commitment to goal of UNFCCC.
- Places climate change in a broader context that includes:
 - enhancing energy security,
 - encouraging economic growth, and
 - reducing air pollution
- Four basic elements:
 - near-term policies & measures, including financial incentives;
 - improved climate science;
 - advanced technologies; and
 - international cooperation.

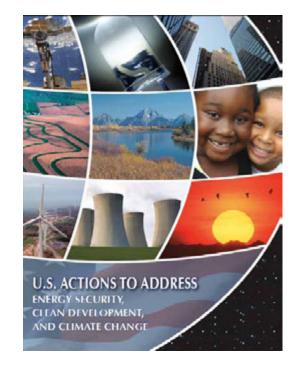
Cabinet-Level Engagement

* Chair and Vice Chair of Committee and Working Group alternate annually.

** CEQ, OSTP, and OMB also Participate

Near-Term Actions ...

Voluntary Programs


- Climate Leaders
- Climate VISION
- SmartWay Transport Partnership
- Voluntary GHG Emission Registry "EPACT 1605(b)"
- Green Power Partnership (EPA)

Incentives for Investment

- Tax incentives for Conservation, Energy Efficiency, Renewable Energy, & Alternative Fuel Vehicles
- Incentives for Agricultural GHG Sequestration
- USAID's Global Climate Change Program
- Global Environmental Facility Fund
- Tropical Forest Conservation Act

Regulatory Reforms

- CAFE Increased for Light Trucks
- "Twenty in Ten" *

http://www.state.gov/g/oes/climate/

Climate VISION Sectors

Alliance of Automobile Manufacturers

Aluminum Association

American Chemistry Council

American Forest & Paper Association

American Iron & Steel Institute

American Petroleum Institute

Association of American Railroads

The Business Roundtable

Industrial Minerals Association - North America

International Magnesium Association

National Lime Association

National Mining Association

Portland Cement Association

Power Partners

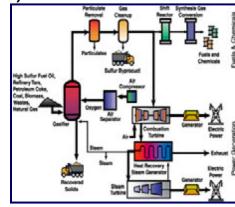
Semiconductor Industry Association

Financial Incentives for Investment . . .

Over \$3 Billion/Year in Existing Tax Incentives	<u>\$M / Year</u>
 Renewable Energy Production Credits ** 	355
 Residential Solar Energy Systems (Tax Credit)** 	10
 Hybrid and Fuel Cell Vehicles (Tax Credit)** 	316
 Industry for Landfill Gas and Combined Heat and Power ** 	133
 Biofuels, Coal Bed Methane (Production Credit) * 	1,000
 Biomass Ethanol (Exemption from Excise Taxes) * 	1,100
 Hydroelectric, Biomass Elec. (Excl. of Interest on Bonds) * 	100
 Clean Fuel Cars, Truck and Refueling Stations * 	50
 Investment Tax Credits for Solar, Geothermal Facilities * 	50
• Total	3,114

* Congressional Research Service Analysis of Tax Expenditures for 2003

** Fed. Climate Change Expenditures Report, FY 2004


Additional Financial Incentives in EPACT* 2005-2015 (\$ Millions)

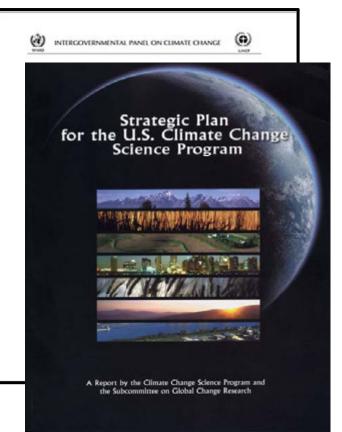
Renewable Energy	10-Years
 Extend Renewable Electricity Production Credit 	2,747
 Renewable Energy Bonds 	411
 Renewable Content in Gasoline (7.5 Bgal – 2012) 	
Nuclear	
 Production Credit for Advanced Nuclear 	278
 Nuclear Decommissioning 	1,293
 Risk Insurance 	2,000
Fossil	
 Investment in Clean Coal Facilities, Including IGCO 	C 1,612
Energy Infrastructure (Transmission)	1,549
Conservation and Energy Efficiency	1,284
Alternative Motor Vehicles and Fuels	1,318
Loan Guarantees for Clean Energy	2,000

EPAct2005: Incentives for Innovative Technologies

- Title XVII authorizes DOE to issue loan guarantees of up to 80% of project costs to accelerate commercial deployment of advanced energy technologies. (19 full applications requested)
 - Eligible technologies must:
 - ✓ Avoid, reduce or sequester GHG or air pollutants
 - Employ new or significantly improved technology
 - Requested Advanced Energy Project Categories:
 - ✓ Fossil Energy
 - ✓ Industrial Energy Efficiency ✓ Biomass
 - ✓ Solar Energy

- ✓ Hydrogen
- ✓ Alternative Fuel Vehicles
- ✓ Electricity Delivery & Energy Reliability
- Title XV increases the amount of the renewable content of gasoline from 4.0 billion gallons in 2006 to 7.5 billion gallons in 2012, and 250 MM gallons of cellulosic ethanol in 2013.
- Title VI provides standby support coverage for certain regulatory delays for up to 6 new nuclear plants.

Insights from Climate Change Science


U.S. Climate Change Science Program

- An Ambitious Program of Research (\$2 B/Year
- **Science Has Deepened Understanding:**
 - Reduced Uncertainties
 - Helped Identify & Clarify Risks
 - Added Info With Regional Specificity
 - » Water » Big Ice
 - » Coasts » Sea Level Rise
 - » Food » Ecosystems
 - » Health » Ocean Acidification

Growing Awareness of Realities:

- Uneven Responses Internationally
- Conditional Participation by Third World
- Shadow Price of Avoided Emissions High
- Pros & Cons of EU Trading System

Underscored Need for Ambitious Goals for Technology and Accelerated Development

President's Technology Strategy

"Energy security and climate change are two of the great challenges of our time. These challenges share a common solution: technology."

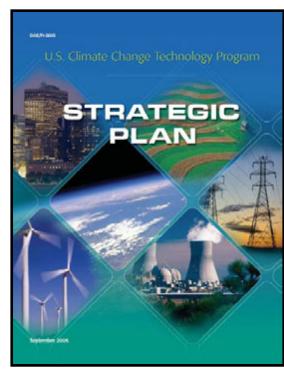
> President George W. Bush Major Economies Meeting September 28, 2007

Harness the Power of Technology to Meet Energy Needs and Address Climate Change

Key Technology Elements

- Coal -- De-Carbonize the Grid
 - » Nuclear Power
 - » Low-Emission Coal Power
 - » Renewable Power
- Cars -- Transform Cars/Trucks Toward New Fuels
 - » Hybrid/Electric Vehicles
 - » Alternative Fuel Vehicles & Bio-Based Fuels
 - » Other Alternatives
- Efficiency (All Sectors)
- Other GHGs
- Enablers
 - » CO₂ Capture and Storage
 - » Modernized Grid
 - » Energy Storage
 - » Strategic Research
- **Supporting Policies**
 - Financial Incentives
 - Fuel Mandates
 - Codes, Standards, Labeling
 - Transparent System for Measuring Progress

Establish U.S. Climate Change Technology Program


- Strengthen Federal R&D Portfolio
- Prioritize Investments

Technology: Seeking Better and More Cost-Effective Solutions

- U.S. Climate Change Technology Program
- Authorized in EPAct 2005
- An Ambitious Program of RDD&D
- \$4 Billion/Year

Climate Technology Goals:

- 1. Reduce Emissions From Energy End Use & Infrastructure
- 2. Reduce Emissions From Energy Supply
- 3. Capture & Sequester CO₂
- 4. Reduce Emissions From Non-CO₂ Gases
- 5. Improve Capabilities to Measure & Monitor GHG
- 6. Bolster Basic Science

www.climatetechnology.gov

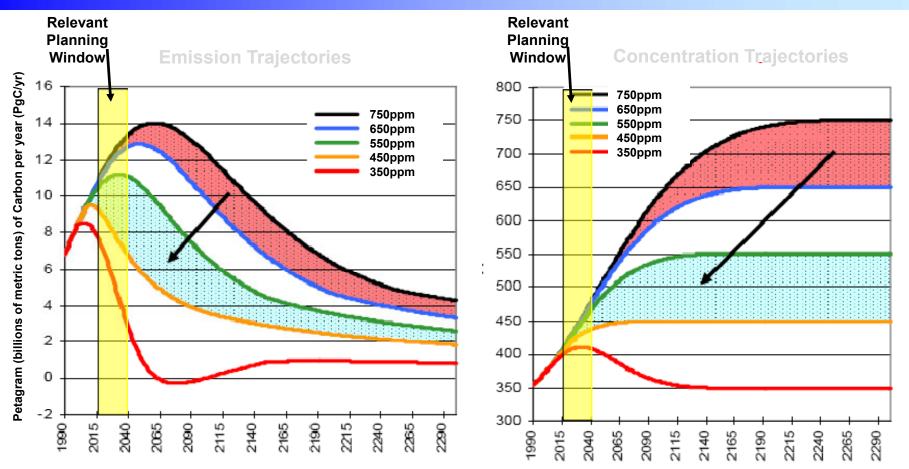
Federal Agency Participation in CCTP

Agency	Selected Examples of Climate Change-Related Technology R&D Activities
DOC	Instrumentation, Standards, Ocean Sequestration, Decision Support Tools
DoD	Aircraft, Engines, Fuels, Trucks, Equipment, Power, Fuel Cells, Lasers, Energy Management, Basic Research
DOE	Energy Efficiency, Renewable Energy, Nuclear Fission and Fusion, Fossil Fuels and Power, Carbon Sequestration, Basic Energy Sciences, Hydrogen, Bio-Fuels, Electric Grid and Infrastructure
DOI	Land, Forest, and Prairie Management, Mining, Sequestration, Geothermal, Terrestrial Sequestration Technology Development
DOS*	International Science and Technology Cooperation, Oceans, Environment
DOT	Aviation, Highways, Rail, Freight, Maritime, Urban Mass Transit, Transportation Systems, Efficiency and Safety
EPA	Mitigation of CO2 and Non-CO2 GHG Emissions through Voluntary Partnership Programs, including Energy STAR, Climate Leaders, Green Power, Combined Heat and Power, State and Local Clean Energy, Methane and High-GWP Gases, and Transportation; GHG Emissions Inventory
HHS*	Environmental Sciences, Biotechnology, Genome Sequencing, Health Effects
NASA	Earth Observations, Measuring, Monitoring, Aviation Equipment, Operations and Infrastructure Efficiency
NSF	Geosciences, Oceans, Nanoscale Science and Engineering Computational Sciences
USAID*	International Assistance, Technology Deployment, Land Use, Human Impacts
USDA	Carbon Fluxes in Soils, Forests and Other Vegetation, Carbon Sequestration, Nutrient Management, Cropping Systems, Forest and Forest Products Management, Livestock, and Waste Management, Biomass Energy and Bio-based Products Development

* CCTP-related funding for the indicated agencies is not included in the totals for CCTP in the budget tables of Appendix A of the Strategic Plan. However, the agencies participate in CCTP R&D planning and coordination as members of CCTP's Working Groups.

Roadmap for Climate Change Technology Development

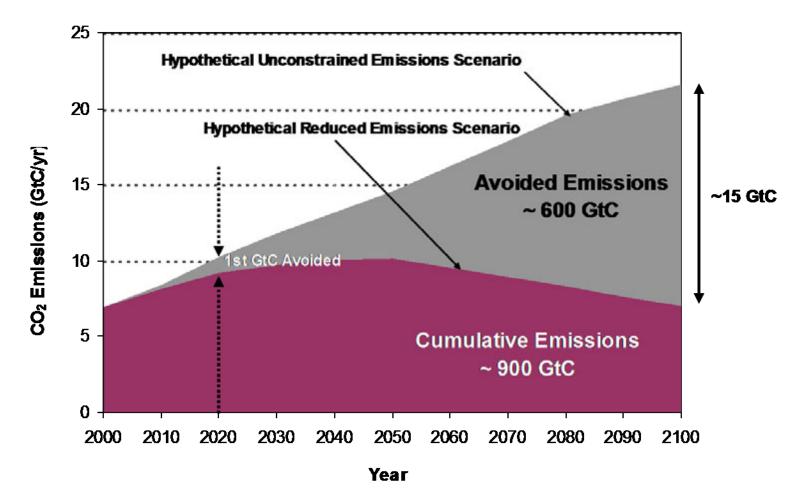
	NEAR-TERM	MID-TERM	LONG-TERM
GOAL #1 Energy End-Use & Infrastructure	 Hybrid & Plug-In Hybrid Electric Vehicles Engineered Urban Designs High-Performance Integrated Homes High Efficiency Appliances High Efficiency Bollers & Combustion Systems High-Temperature Superconductivity Demonstrations 	 Fuel Cell Vehicles and H₂ Fuels Low Emission Aircraft Solid-State Lighting Ultra-Efficient HVACR "Smart" Buildings Transformational Technologies for Energy-Intensive Industries Energy Storage for Load Leveling 	 Widespread Use of Engineered Urban Designs & Regional Planning Energy Managed Communities Integration of Industrial Heat, Power, Process, and Techniques Superconducting Transmission and Equipment
GOAL #2 Energy Supply	 IGCC Commercialization Stationary H₂ Fuel Cells Cost-Competitive Solar PV Demonstrations of Cellulosic Ethanol Distributed Electric Generation Advanced Fission Beactor and Fuel Cycle Technology 	FutureGen Scale-Up H ₂ Co-Production from Coal/Biomass Low Wind Speed Turbines Advanced Biorefineries Community-Scale Solar Gen IV Nuclear Plants Fusion Pilot Plant Demonstration	 Zero-Emission Fossil Energy H₂ & Electric Economy Widespread Renewable Energy Bio-Inspired Energy & Fuels Widespread Nuclear Power Fusion Power Plants
GOAL #3 Capture, Storage & Sequestration	CSLF & CSRP Post Combustion Capture Oxy-Fuel Combustion Enhanced Hydrocarbon Recovery Geologic Reservoir Characterization Soils Conservation Dilution of Direct Injected CO ₂	Geologic Storage Proven Safe CO ₂ Transport Infrastructure Soils Uptake & Land Use Ocean CO ₂ Biological Impacts Addressed	 Track Record of Successful CO₂ Storage Experience Large-Scale Sequestration Carbon & CO₂ Based Products & Materials Safe Long-Term Ocean Storage
GOAL #4 Other Gases	Methane to Markets Precision Agriculture Advanced Refrigeration Technologies PM Control Technologies for Vehicles	Advanced Landfill Gas Utilization Soil Microbial Processes Substitutes for SF ₆ Catalysts That Reduce N ₂ O to Elemental Nitrogen in Diesel Engines	Integrated Waste Management System with Automated Sorting, Processing & Recycle Zero-Emission Agriculture Solid-State Refrigeration/AC Systems
GOAL #5 Measure & Monitor	Low-Cost Sensors and Communications	Large Scale, Secure Data Storage System Direct Measurement to Replace Proxies and Estimators	 Fully Operational Integrated MM Systems Architecture (Sensors, Indicators, Data Visualization and Storage, Models)


Advanced Technology Scenario Analysis

Planning & Analysis Under Conditions of Uncertainty

- **Global Perspective**
- **100-Year Planning Horizon**
- **Uncertainty Across GHG**
- **Stabilization Goals**
- **Technology Scenarios**
- **Technology Competitions**
- **Economic Benefits**

Long-Term Goals Require Near-Term Actions



Emission and concentration trajectories based on current funding profile for technology investments

Potential carbon reductions based on proposed technology investments

Action period to influence longer-term outcomes

Mid-Range Example of A Reduced GHG Emissions Future

GtC = Giga-Tonnes Carbon

Giga-Tonne = Billion (10⁹) Metric-Tonnes (1000 Kilograms)

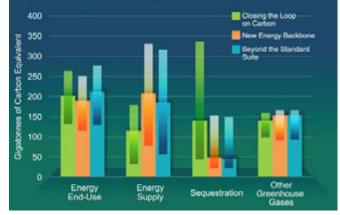
How Big is a Gigaton? Using Today's Technology, These Actions Can Cut Emissions by 1 GtC/Year

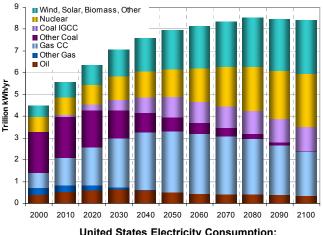
Today's Technology	Actions that Provide 1 Gigaton / Year of Mitigation
Coal-Fired Power Plants	Build 1,000 "zero-emission" 500-MW coal-fired power plants (in lieu of coal-fired plants without $\rm CO_2$ capture and storage)
Geologic Sequestration	Install 3,700 sequestration sites like Norway's Sliepner project (0.27 MtC/year)
Nuclear	Build 500 new nuclear power plants, each 1 GW in size (in lieu of new coal-fired power plants without CO_2 capture and storage)
Electricity from Landfill Gas Projects	Install 7,874 "typical" landfill gas electricity projects (typical size being 3 MW projects at non-regulated landfills) that collect landfill methane emissions and use them as fuel for electric generation.
Efficiency	Deploy 1 billion new cars at 40 miles per gallon (mpg) instead of new cars at 20 mpg
Wind Energy	Install 650,000 wind turbines (1.5 MW each, operating at 0.45 capacity factor) in lieu of coal-fired power plants without CO_2 capture and storage.
Solar Photovoltaics	Install 6 million acres of solar photovoltaics to supplant coal-fired power plants without CO ₂ capture and storage (assuming 10% cell DC efficiency, 1700 kWhr/m2 solar radiance, and 90% DC-AC conversion efficiency).
Biomass fuels from plantations	Convert a barren area about 15 times the size of Iowa's farmland (about 33 million acres) to biomass crop production
CO ₂ Storage in New Forest.	Convert a barren area about 40 times the size of lowa's farmland to new forest

Scenario and Results

Advanced Technology Scenarios

- #1: Closing the Loop on Carbon
 - Advanced Coal Systems
 - Carbon Capture and Storage
 - Hydrogen Technologies
- #2: New Energy Backbone
 - Nuclear Power
 - Wind Power
 - Solar Power
- #3: Beyond the Standard Suite
 - Fusion Energy
 - Novel Energy Technologies
 - Bio-X
 - Large Scale Solar


Common Characteristics Across Scenarios


Additional Gains in Efficiency Beyond Ref. Case Additional Technologies for Managing GHGs Terrestrial Carbon Sequestration Increases Full Potential of Conventional Oil & Gas Realized Hydrogen Production Technology Advances

GHG Emissions

Unconstrained (Ref. Case) Four Levels of Constraints

Potential Contributions to Emissions Reduction

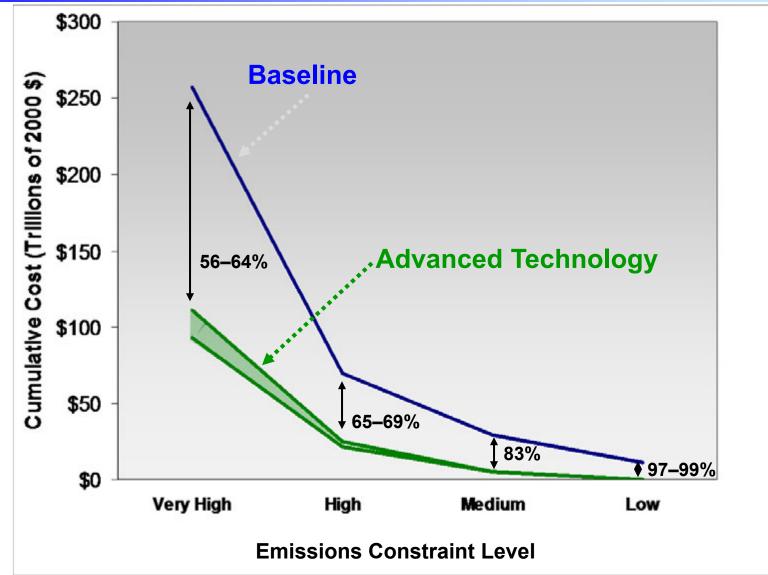
United States Electricity Consumption: Closing the Loop on Carbon, 550 ppmv

Quantities – Potential 100-Year Reductions

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	250 - 270	190 - 210	150 - 170	110 - 140
Goal #2: Reduce Emissions from Energy Supply	180 - 330	110 - 210	80 - 140	30 - 80
Goal #3: Capture and Sequester Carbon Dioxide	150 - 330	50 - 140	30 - 70	20 - 40
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	160 - 170	140 - 150	120 - 130	90 - 100

Estimated cumulative GHG emissions mitigation (GtC) from accelerated adoption of advanced technologies over the 21st century, by strategic goal, across a range of hypothesized GHG emissions constraints.

Source: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.


Timing

CCTP Strategic Goal	Very High Constraint	High Constraint	Medium Constraint	Low Constraint
Goal #1: Reduce Emissions from Energy End Use and Infrastructure	2010 - 2020	2030 - 2040	2030 - 2050	2040 - 2060
Goal #2: Reduce Emissions from Energy Supply	2020 - 2040	2040 - 2060	2050 - 2070	2060 – 2100
Goal #3: Capture and Sequester Carbon Dioxide	2020 - 2050	2040 or Later	2060 or Later	Beyond 2100
Goal #4: Reduce Emissions of Non-CO ₂ GHGs	2020 - 2030	2050 - 2060	2050 - 2060	2070 - 2080

Estimated timing of advanced technology market penetrations, as indicated by the first GtC-eq./year of incremental emissions mitigation, by strategic goal, across a range of hypothesized GHG emissions constraints.

Source:: Clarke, L., M. Wise, M. Placet, C. Izaurralde, J. Lurz, S. Kim, S. Smith, and A. Thomson. 2006. Climate Change Mitigation: An Analysis of Advanced Technology Scenarios. Richland, WA: Pacific Northwest National Laboratory.

Expected Global Benefits of Advanced Technology Development

Technology R&D Portfolio Analysis

Role for CCTP

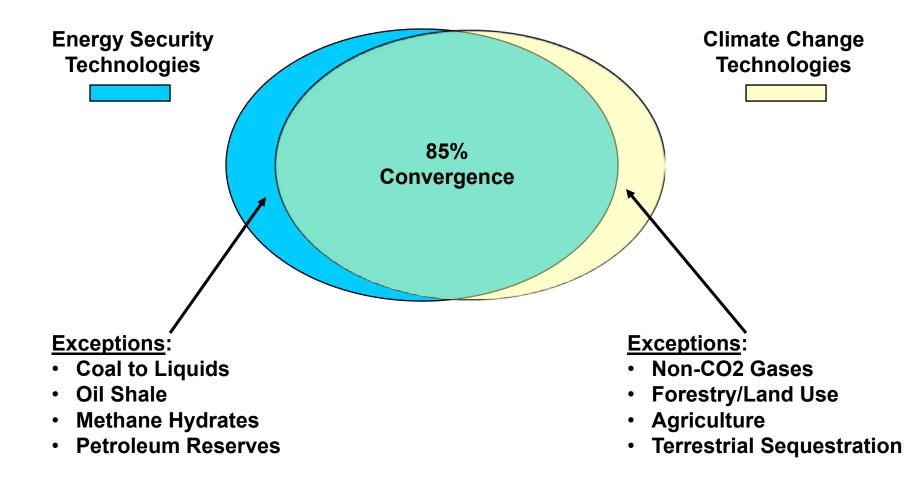
Strengthen the Federal R&D Portfolio

Provide Strategic Direction to R&D Agencies

Monitor Progress Toward Goals

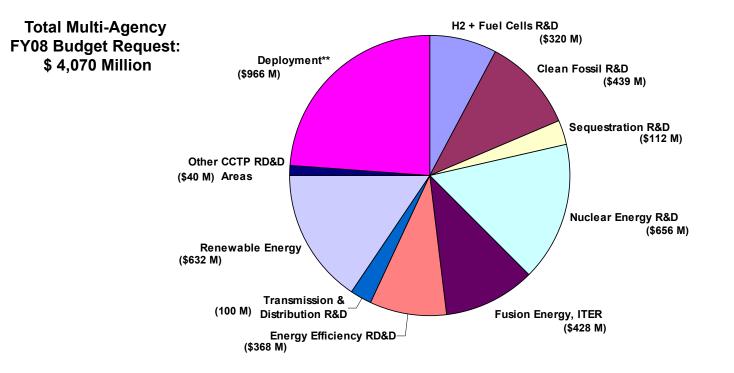
Assess Portfolio Strengths and Weaknesses

Identify Gaps and Opportunities


Prioritize Investments

- Portfolio Planning Principles
- Investment Criteria

Make Recommendations

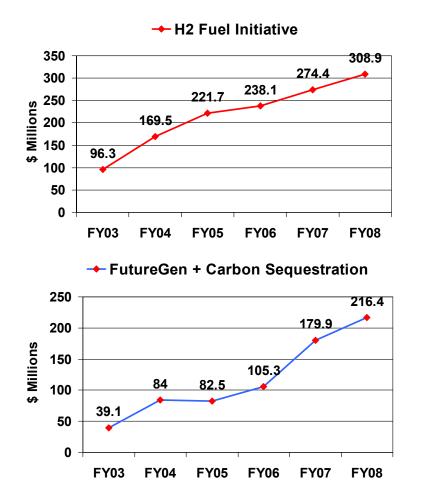

Foster Collaborations with Non-Federal Entities

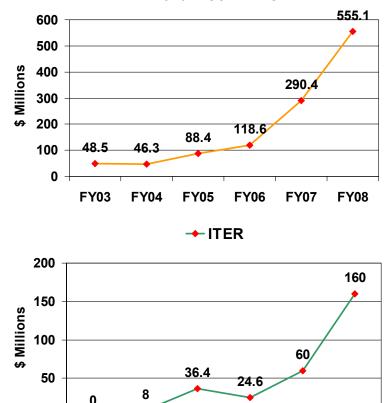
Technology Nexus Between Energy Security and Climate Change Strategies

FY 2008 Budget Request -- CCTP Portfolio

CCTP FY08 Budget Request* Portfolio of RD&D and Deployment

* All CCTP Federal Agencies FY08 Budget Request (inc: USAID & STATE)


** Deployment is 55% Energy Efficiency


FY 2008 Budget Request – Key Initiatives

0

FY03

FY04

FY05

FY06

FY08

FY07

NP2010 + GenIV + GNEP

Potential Role of Hydrogen*

Hydrogen is a highly versatile energy carrier

- Capable of transforming transportation (and potentially other energy services)
- Compatible with many primary energy sources
- Can be generated at various scales

Versatility opens up possibilities for long-term dynamic optimization:

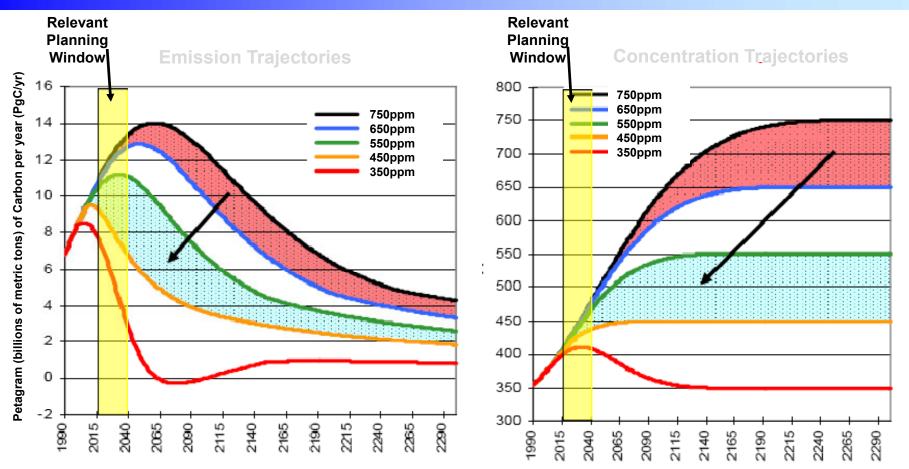
- CO₂ emissions, technology development lead times, economics, and other factors

May ultimately serve as a means of linking energy sources to energy uses in ways that are more flexible, secure, reliable, and responsive to consumer demands than today

May also help integrate the transportation and electricity markets

Production can be a value-added complement to other advanced climate change technologies, such as fossil fuels or biomass with CO_2 capture and storage May be a key and enabling component for full deployment of carbonless electricity technologies (advanced fission, fusion, and/or intermittent renewables)

^{*} See Strategic Plan, U.S. Climate Change Technology Program, September 2006


Hydrogen Fuel Initiative Budget by Participant Organization

	Funding (\$ in thousands)								
Activity	FY2005 Approp	FY2006 Approp	FY2007 Actual	FY2008 Request					
Hydrogen Fuel Initiative									
EERE Hydrogen (HFCIT)	166,772	153,451	193,551	213,000					
Fossil Energy (FE)	16,518	21,036	23,611	12,450					
Nuclear Energy (NE)	8,682	24,057	18,665	22,600					
Science (SC)	29,183	32,500	36,500	59,500					
DOE Hydrogen TOTAL	221,155	231,044	272,327	307,550					
Department of Transportation	549	1,411	1,420	1,425					
Hydrogen Fuel Initiative TOTAL	221,704	232,455	273,747	308,975					

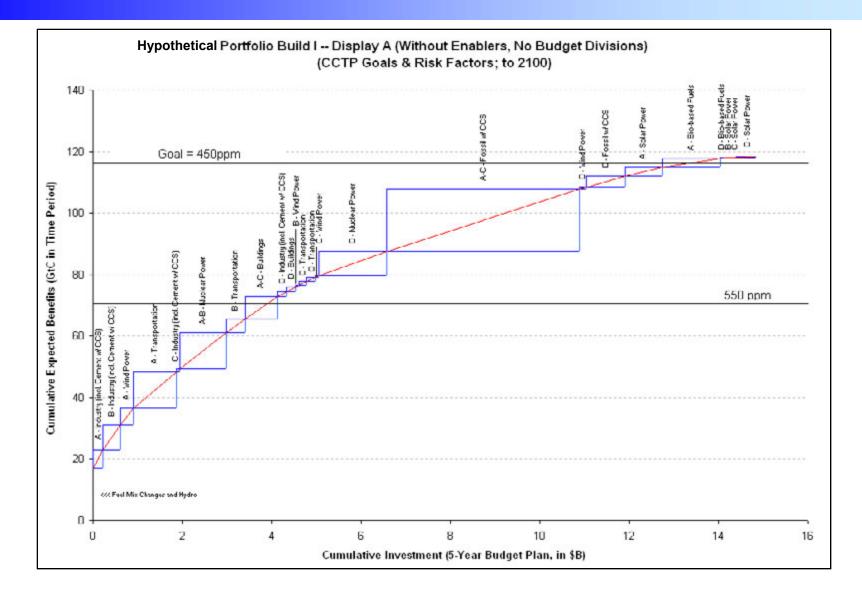
EERE Hydrogen Budget

	Funding (\$ in thousands)								
Activity	FY 2005 Approp	FY 2006 Approp	FY 2007 Actual	FY 2008 Request					
Hydrogen Production & Delivery	13,303	8,391	34,594	40,000					
Hydrogen Storage R&D	22,418	26,040	34,620	43,900					
Fuel Cell Stack Component R&D	31,702	30,710	38,082	44,000					
Technology Validation	26,098	33,301	39,566	30,000					
Transportation Fuel Cell Systems	7,300	1,050	7,518	8,000					
Distributed Energy Fuel Cell Sys.	6,753	939	7,419	7,700					
Fuel Processor R&D	9,469	637	4,056	3,000					
Safety, Codes & Standards	5,801	4,595	13,848	16,000					
Education	0	481	1,978	3,900					
Systems Analysis	3,157	4,787	9,892	11,500					
Manufacturing R&D	0	0	1,978	5,000					
Technical/Program Mgt. Support	535	0	0	0					
Congressionally Directed Activities	40,236	42,520	0	0					
TOTAL	166,772	153,451	193,551	213,000					

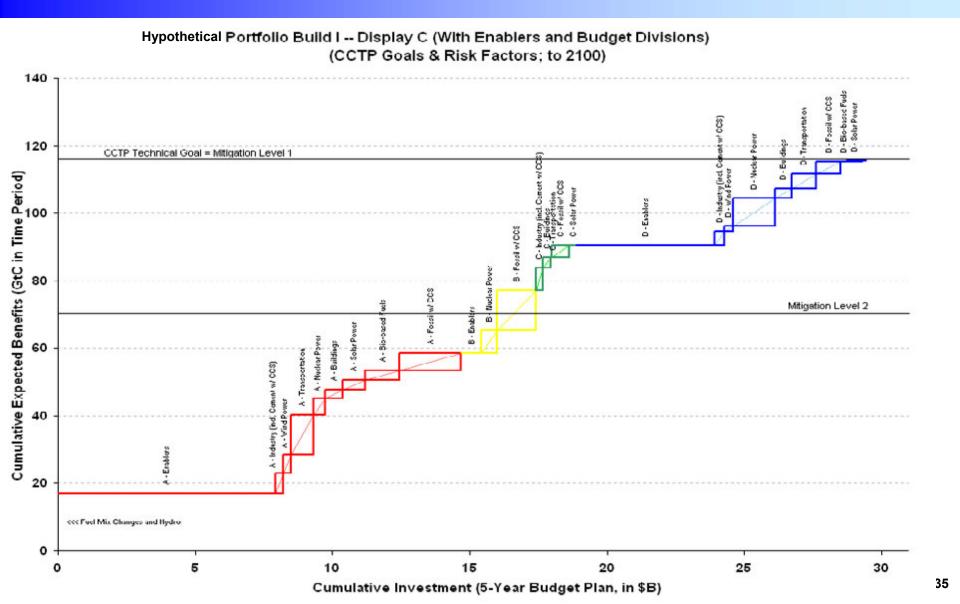
Long-Term Goals Require Near-Term Actions

Emission and concentration trajectories based on current funding profile for technology investments

Potential carbon reductions based on proposed technology investments


Action period to influence longer-term outcomes

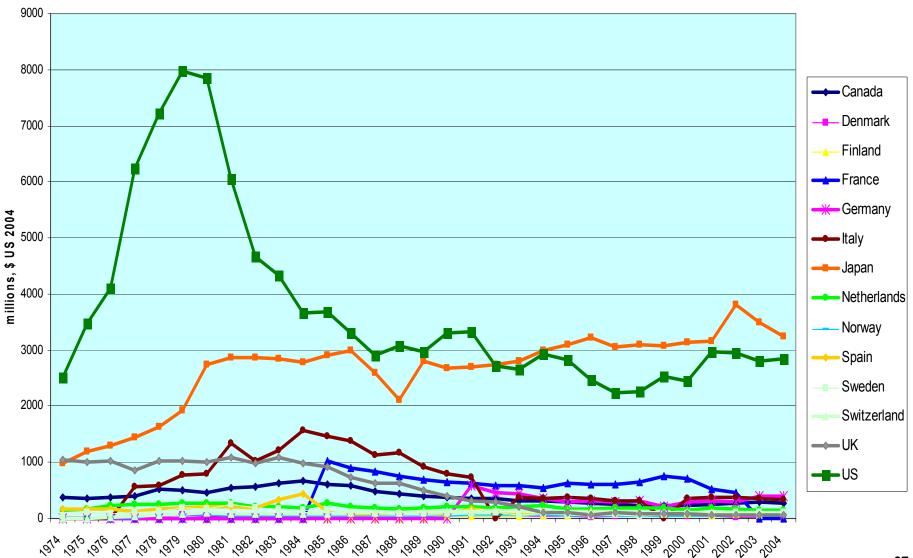
CCTP Portfolio Assessment


and the second se		Corresponding Technologies in Portfolio Analysis		Most		Scen	arios Year	s & Quant	ties – U.S.	Only	Likelih	ood of 0	CCTP G	oal Attai	nment"	
CCTP Strategic Goal	Key Element of Strategy		Lead	Challenging Technical Scenario	Units	2020	2030	2040	2050	2100	Very Unlikely	the districtly	Maybe	LBH	Very Likely	
	1,1	Transportation	Primary Energy Reduction	EE	BSS 450	OtC/yr	0.10	0.14	0.19	0.23	0.34			1	~	
Reducing Emissions from Energy End-Use and	1.2	Buildings	Primary Energy Reduction	EE	8SS 450	OtC/yr	0.04	0.08	0.11	0.14	0.15			1		
Infrastructure	1.3	industry	Primary Energy Reduction	66	855 450	GtC/yr	0.12	0.17	0.21	0.24	0,18		1	1		
	14	Electric Grid and Inhadracture	Enabling Technology, U.S. God Demand	OÐ	NER 450	Tellion kWh/yr	6.67	7.35	7.92	8.38	9.49		1		1	
		Low Emission, Ecosil Based	Electricity Coal w/CCS	re	CLC 450	GtC/yr	0.02	0.05	0.11	0.19	0.33		1		~	
	2.1	Fuels and Power	Electricity: Natural Gas w/CCS	FE.	CLC 450	CAC/yr	0.02	0.04	80.0	0.15	0.25	1				
	22	Hydrogen	Hydrogen Production	EE	CLC 450	Oueds	2.40	3.10	4.00	5.10	7.40			1		
			Electricity: Solar Power	EE	NEB 450	OIC/yr	0.00	0.00	0.02	0.04	0.06		1			
Reducing Emissions from	23	Renewable Energy and Faces	Electricity. Wind Pewer	88 B	NEB 450	OLC/yr	0.00	0.02	0.06	0.11	0.13		1			
Energy Supply			Dio-Dased Fuels	66	855 450	GtC/yr	0.00	0.00	0.02	0.05	0.06				1	
			Electricity: Gen III Reactors	NE	NEB 450	GIC/yr	0.01	0.05	0.13	0.24	0.37			1	~	
	2.4	Nuclear Fission	Electricity: Gen IV Reactors	NE	NED 450	GIC/yr	0.00	0.00	0.02	0.06	0.15		1			
				Electricity International Tech - CNEP	NE	NEB 450 W	Trillion kWh/yr	0.01	0.01	0.02	21.94	39.06		1		
	25	Fusion Energy	Electricity: Fusion Energy, Others	90	DSS 450	GtC/yr	0.00	0.00	0.01	0.04	0.35	1				
	3.1	Cerbon Cepture	(Embedded in 2.1)	re	CLC 450	GtC/yr	0.01	0.01	0.03	21.99	39.41		1		1	
Capturing and	32	Geological Stanage	Carbon Stonage	FR.	CLC 450	GIC/J*	0.04	0.09	0.20	0.35	0.61		1		1	
Sequestering Carbon Dioxide	33	Terrestrial Sequestration	TBD	USDA	TBD	CACJyr	TBD									
	3.4	Ocean Sequestration	Not Applicable This Roand	DOE	NUA	N/A	TBD									
	4.1	Methane Emissions from Energy and Waste	CHa in COy-Equivalence	DOE/EPA	CLC 450	GtC-Eq./yr	TBD					1				
200		Methane and Nitrous Oxide	TRDCH4 (Part)	USDA	CLC 450	CitC-Eq./yr			TBD				1			
Reducing Emissions of	4.2	Emosions from Agriculture	TED-N ₆ O (Part)	USEDA	CLC 400	GHC-Eq./yr			TBD				1			
Non-CO ₂ Greenhouse	43	Emissions of High Global-Warning	Short-Lived F-Gases in COu-Equivalence	EPA	CLC 450	Ort-Eq./yr			TBD						1	
Gasses	4.5	Potential Gases	Long Lived F-Gases in CO ₂ Equivalence	EPA	CLC 450	GIC-Eq./yr			TBD						~	
	4.4	Nitious Oxide Emissions Itom Combustion and Industrial Sources	N ₂ O in CO ₂ Equivalence	EPA	CLC 450	OIC-Eq./yr			TBD				1			
	45	Emissions of Tropospheric Ozone Precursors and Black Carbon	TRD	EPA	TBD	OIC Eq./yr			TBD		- 2					
	6.2	MM - Energy Production and Efficiency	NA	000	NA	NA	Refe	er to Stra	tegic Pla	n, Chap	er 8			1		
Enhancing Capabilities to	53	MM - CO ₂ Capture and Sequestration	NA	poe	N/A	NIA	Refe	er to Stra	tegic Pla	n, Chap	er 8			1		
Measure and Monitor Greenhouse Gasses	5.4	MM - Other Greenhouse Gases	NIA	LIPA	NA	NIA	Refe	r to Stra	tegic Pla	n, Chap	er 8			1		
-	5.5	MM - Integrated Systems Architecture	N/A	8C	NASA.	NUA	Refe	er to Stra	tegic Pla	n, Chap	er 8		~			
	6.1	Strutegic Research	NA	80	NA	NA	Refe	er to Stra	tegic Pla	n, Chap	er 9				~	
Bolster Basic Science Contributions to	6.2	Fundamental Science	NEA	50	NKA	NIA	Refe	er to Stra	tegic Pla	n, Chap	er 9				1	
Technology Development	6.3	Exploratory Research	NEA.	NC	N/A	N/A.	Refe	er to Stra	tegic Pla	n, Chap	er 9	1		1		

* Very Likely (90-100%); Likely (60-90%); Maybe (40-60%); Unlikely (10-40%); Very Unlikely (0-10%)

Hypothetical Portfolio Build – Display A

Hypothetical Portfolio Build – Display C

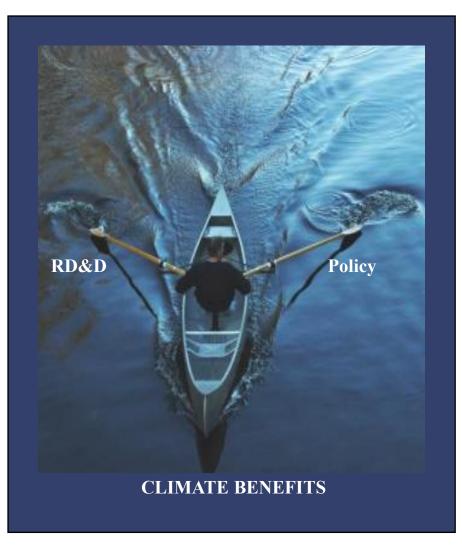

Historical Perspective

U.S. DOE Energy RD&D Budget 1978-FY2008 Administration Request **Projections** 7000.0 Hydrogen (non-fossil) Times "3" Electricity T&D 6000.0 Est. Annual ■ Fossil (including CCT demo) Subsidy for Ethanol in 2006 Renewables 5000.0 Efficiency **Times "2"** 4000.0 Fusion Fission 3000.0 Flat 2000.0 1000.0 0.0 2005 200⁶200⁶ 12⁶ 2 2 2 C

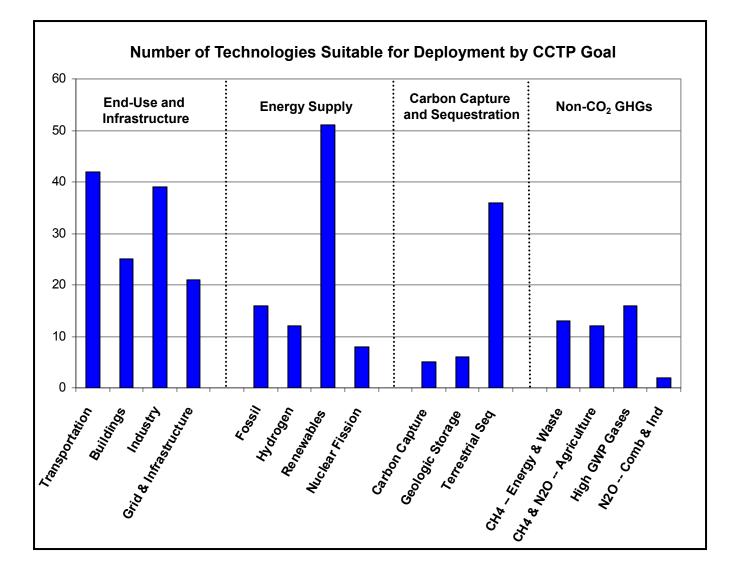
million 2000\$

December 13, 2007

History of Int'l Energy R&D


37

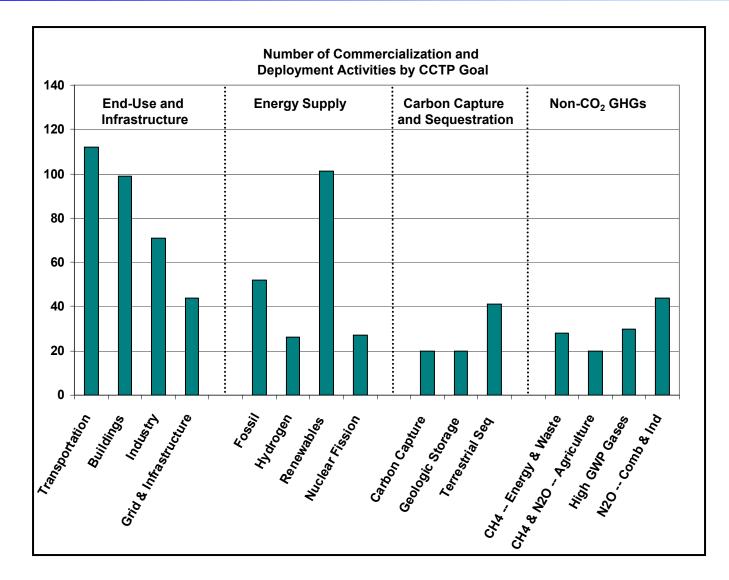
Supporting Policy and Measures


Supporting Policy and Measures

Technology Strategy

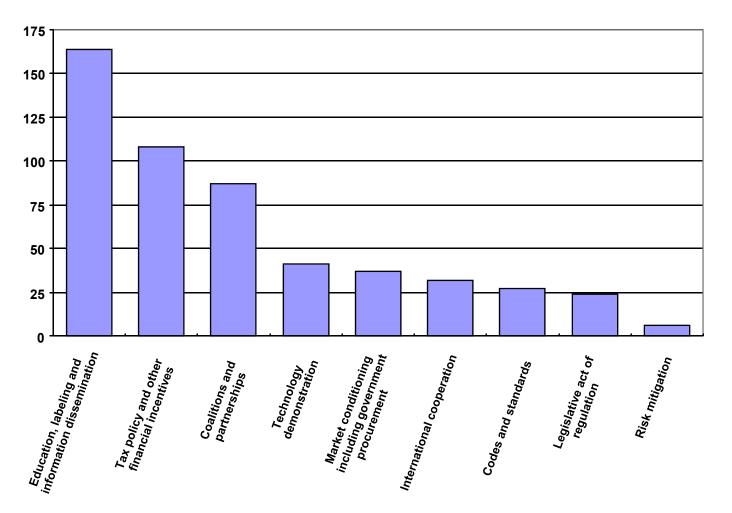
- Technology RD&D
- Supporting Policy and Measures
- **Need Both for:**
 - Timely Deployment
- Realization of Expected Benefits

Technology Taxonomy & Inventory

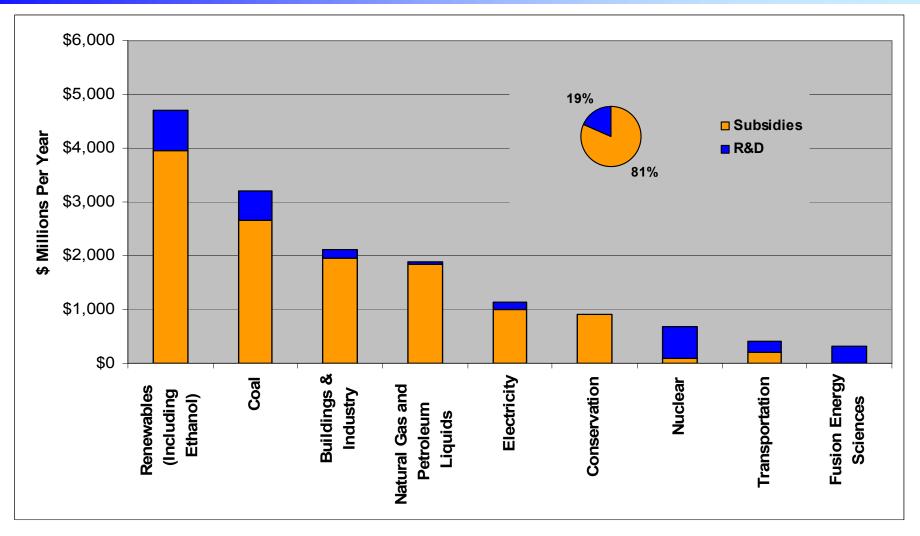


Barriers Typology

Cost Effectiveness	Fiscal Barriers	Regulatory Barriers	Statutory Barriers	Intellectual Property Barriers	Other Barriers
High Costs	Unfavorable Fiscal	Unfavorable Regulations	Unfavorable Statutes	IP Transaction Costs	Incomplete and Imperfect Information
Technical Risks	Fiscal Uncertainty	Regulatory Uncertainty	Statutory Uncertainty	Anti- competitive Patent Practices	Infrastructure limitations
Market Risks	Unfavorable tariffs			Weak International Patent Protection	Industry Structure
External Benefits and Costs	6 B	6 Barrier Categories 21 Barriers ~50 Detailed Barriers			Misplaced Incentives
Lack of Specialized Knowledge					Policy Uncertainty

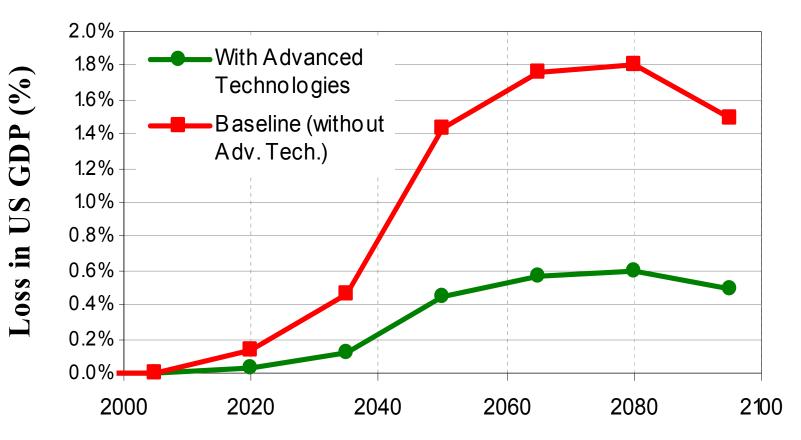

Barriers are organized into six categories consistent with EPAct 2005 Title XVI.

Commercialization and Deployment Activities, by Technology Area

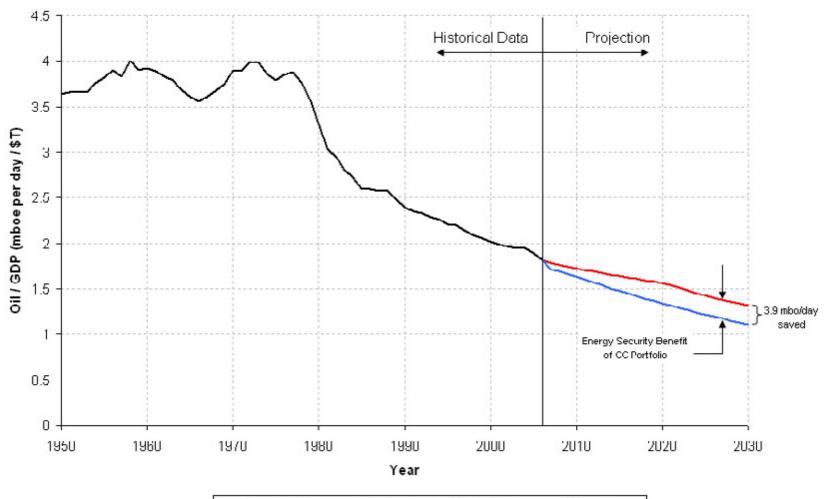

Commercialization & Deployment Activities, by Category or Genre

Number of Government Commercialization and Deployment Activities by Type of Policy and Measure

December 13, 2007


Federal Subsidies on Energy, FY 2007

Sources: R&D data are from the Federal Climate Change Expenditures Report (2007). Subsidy data are from the Energy Information Administration analysis of tax expenditures, U.S. Treasury (2007).


Economic Benefits of Advanced Technology

Cost to U.S. Economy of Achieving 450 ppm Emissions Trajectory, with and without Advanced Technologies

Energy Security Benefits

Oil Intensity of U.S. Economy

- AER/BEA - CCTP Model BAU Portfolio - CC Portfolio


International Cooperation

International Cooperation: Key Component of U.S. Climate Change Policy

- "I am today committing the United States of America to work within the United Nations framework and elsewhere to develop with our friends and allies and nations throughout the world an effective and science-based response to the issue of global warming."—President Bush, June 11, 2001
- "I will intend to work with nations, especially the poor and developing nations, to show the world that there is a better approach, that we can build our future prosperity along a cleaner and better path."

-President Bush, February 14, 2002

Principles for Effective International Action Climate Change, Clean Energy and Sustainable Development

> The U.S. Is Guided by the Following Principles:

- Climate change is a serious long-term issue, requiring sustained action over many generations by both developed and developing countries.
 - Developing innovative technologies that are cleaner and more efficient is the key to addressing our climate challenge.
- We oppose any policy that would achieve reductions by putting Americans out of work, or by simply shifting emissions from one state to another, or from the U.S. to another country.
 - Like us, developing countries are unlikely to join in approaches that foreclose their own economic growth and development.

U.S. Climate Change Bilaterals

Innovative International Technology Partnerships

Carbon Sequestration Leadership Forum: 22 members; focused on CO_2 capture & storage.

International Partnership for the Hydrogen Economy: 17 members; organizes, coordinates, and leverages hydrogen RD&D programs.

Generation IV International Forum: 10 members; devoted to R&D on next generation of nuclear systems.

ITER: 7 members; project to develop fusion as a commercial energy source.

Methane to Markets: 17 members; recovery and use of methane from landfills, mines, oil & gas systems, and agriculture.

Asia-Pacific Partnership on Clean Development & Climate: 6 members; focuses on accelerating deployment of technologies to address energy security, air pollution, and climate change.

Global Nuclear Energy Partnership: Seeks worldwide consensus on enabling expanded use of nuclear energy using a nuclear fuel cycle that enhances energy security, while promoting non-proliferation. 51

December 13, 2007

Asia-Pacific Partnership on Clean Development and Climate

Australia

China

India

Japan Republic of Korea United States

Focus: Vision Statement for APP

- Undertake voluntary practical measures to create new investment opportunities, build local capacity, and remove barriers to the introduction of clean, more efficient technologies.
- Help each country meet nationally designed strategies for improving energy security, reducing pollution, and addressing the long-term challenge of climate change.
- Promote the development and deployment of existing and emerging cleaner, more efficient technologies and practices that will achieve practical results in areas such as:
- Clean Coal
- Natural Gas
- Bioenergy
- Energy Efficiency Methane Capture/Use
 - Civilian Nuclear Power
 - Geothermal
 - Agriculture/Forestry
- Rural/Village Energy Systems
- Advanced Transportation
- Hydro/Wind/Solar Power
- **Building & Home Construction** •

Major Economies Process

Complements, Does not Supplant, Central Role of the UNFCCC and the 1992 Treaty Designed to Facilitate Cooperation Among 17 Major Emitters

Focused on:

- Climate Change and Energy Security
- Environmental Effectiveness and Economic Sustainability
- Mitigation and Adaptation
- National Circumstances and Global

Initial Emphasis:

- Land Use
- Technology
 - » Low-Carbon Fossil Power
 - » Transportation
 - » Efficiency
- Market Penetration
- Financing

"Energy security and climate change are two of the great challenges of our time. The United States takes these challenges seriously. The world's response will help shape the future of the global economy and the condition of our environment for future generations. The nations in this room have special responsibilities." President George W. Bush September 28, 2007

Major Economies Represented					
Australia	Germany	Mexico			
Brazil	India	Russia			
Canada	Indonesia	South Africa			
China	Italy	UK			
EU / EC	Japan	United States			
France	Korea	UN / IPCC*			

Path Forward

Summary -- A Path Forward Involves ...

A Visionary Long-Term Approach, Based on Innovation, Growth and International Cooperation

Continued Leadership from the Top

<u>Near-Term Actions</u> – Voluntary, Augmented by Financial Incentives Progress in Climate Change <u>Science</u> Will:

- Reduce Uncertainty and Illuminate Risks and Benefits
- Add Relevance and Specificity to Assist Decision-Makers

Progress in Climate Change <u>Technology</u> Will:

- Create New, Better, and More Affordable Solutions
- Facilitate Means for Change and Smooth Transition

Expanded Opportunities for <u>Cooperation</u> Among:

- Business, Industry, States and NGOs
- Research Institutions and Academia
- Major Economies, Under G8 Leadership
- Cooperative Frameworks with S&T Actions Abroad

Will Build a Bridge to Low-Emissions Future with Broad Support