@Scale:

Energy system-wide benefits of increased H₂ implementation

HTAC Meeting

May 4, 2017

H2@Scale Workshop Report available at

http://www.nrel.gov/docs/fy17osti/68244.pdf

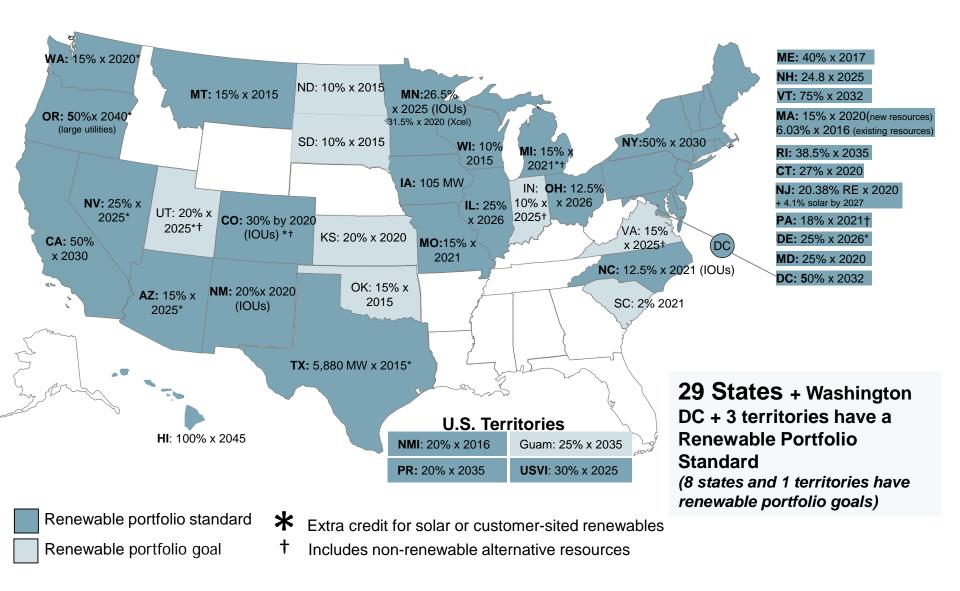
H2@Scale webinar available at

http://energy.gov/eere/fuelcells/downloads/h2-scale-potential-opportunity-webinar

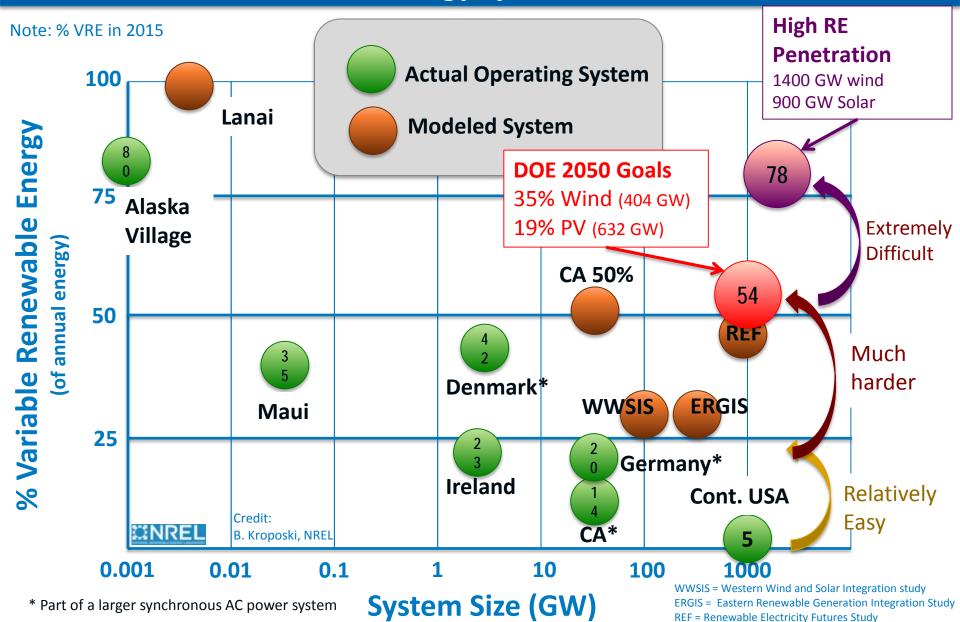
Downtown Denver from NREL

27 September 2016 | GENEVA - A new WHO air quality model confirms that 92% of the world's population lives in places where air quality levels exceed WHO limits.

More than half US population lives amid dangerous air pollution, report warns

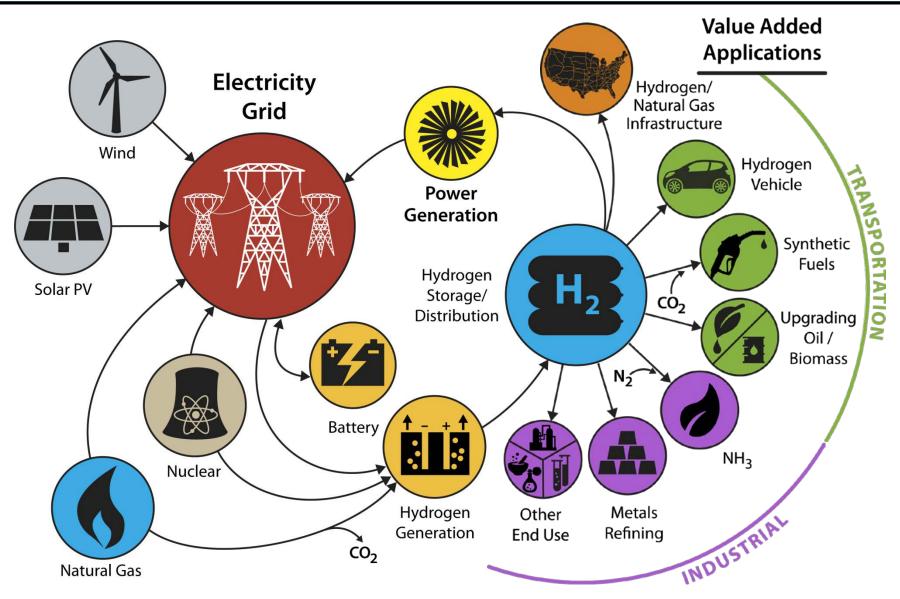

https://www.theguardian.com/environment/2016/apr/20/d angerous-air-pollution-us-population-report

Energy System Challenge


- Multi-sector requirements
 - Transportation
 - o Industrial
 - o Grid

How do we supply all these services in the most beneficial manner?

Changing Landscape - RPS


What constitutes "a pace and scale that matters" for our efforts to transform clean energy systems?

Dwight D. Eisenhower

"If you can't solve a problem, enlarge it"

Conceptual H₂ at Scale Energy System*

^{*}Illustrative example, not comprehensive

H2@Scale Vision

Attributes

- Large-scale, clean, energy-carrying intermediates for use across energy sectors
- o Increased penetration of variable renewable power and nuclear generation
- Expanded thermal generation (nuclear, CSP, geothermal) through hybridization
- Increased H2 from methane (carbon capture/use potential)

Benefits

- Increased energy sector jobs (GDP impact)
- Manufacturing competitiveness (low energy costs)
- Enhanced energy security (reduced imports, system flexibility/resiliency)
- Enhanced national security (domestic production (metals), local resources)
- Improved air(water) quality via reduced emissions (criteria pollutants, GHGs)
- Decreased energy system water requirements.

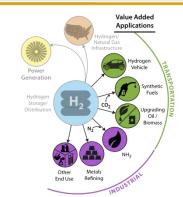

Getting <u>all</u> these benefits in a single energy system significantly enhances value proposition.

What is needed to achieve H₂ at Scale?

Low and High Temperature H₂ Generation

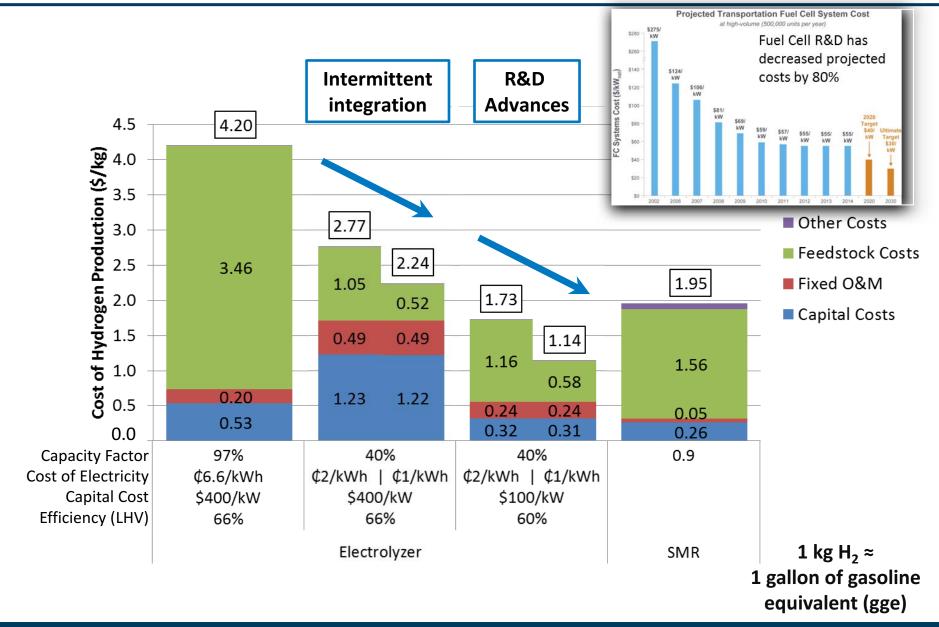
H₂ Storage and Distribution

H₂ Utilization


Development of low cost, durable, and intermittent H₂ generation.

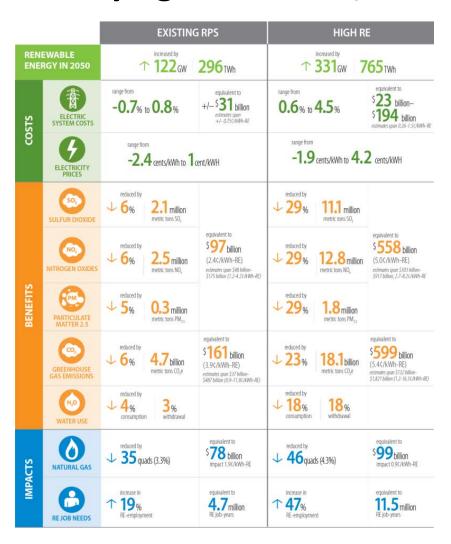
thermally integrated, low cost, durable, and variable H₂ generation.

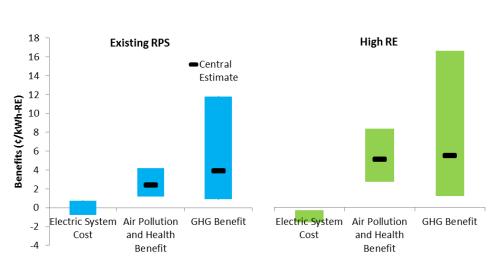
Development of safe, reliable, and economic storage and distribution systems.


H₂ as gamechanging energy carrier, revolutionizing energy sectors.

Analysis

Foundational Science


Future Electrical Grid


Improving the Economics of Renewable H₂

Value Proposition Development

Trying to build off/follow in tracks of others

<u>A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards</u>

NREL/TP-6A20-67455

http://www.nrel.gov/docs/fy17osti/67455.pdf

H₂ at Scale Big Idea Teams/Acknowledgement

Steering Committee:

Bryan Pivovar (lead, NREL), Amgad Elgowainy (ANL), Richard Boardman (INL), Shannon Bragg-Sitton (INL); Adam Weber (LBNL), Rod Borup (LANL), Mark Ruth (NREL), Jamie Holladay (PNNL), Chris Moen (SNL), Don Anton (SRNL)

H2@Scale has moved beyond this National Lab team to include DOE offices, and industrial/other stakeholders.

Low T **Generation:**

Rod Borup (lead, LANL); Jamie Holladay (PNNL); Christopher San Marchi (SNL); Hector Colon Mercado (SRNL); Kevin Harrison (NREL); Ted Krause (ANL); Adam Weber (LBNL); David Wood (ORNL)

High T **Generation:**

Jamie Holladay (lead, PNNL); Jim O'Brien (INL); Tony McDaniel (SNL); Ting He (INL); Mike Penev (NREL); Bill Summers (SRNL); Maximilian Gorensek (SRNL); Jeffery Stevenson (PNNL); Mo Khaleel (ORNL)

Storage and **Distribution:**

Don Anton (lead, SRNL); Chris San Marchi (SNL); **Kriston Brooks** (PNNL); Troy Semelsberger (LANL); Salvador Aceves (LLNL); Thomas Gennett (NREL); Jeff Long (LBNL); Mark Allendorf (SNL); Mark Bowden PNNL; Tom Autrey PNNL

Utilization:

Richard Boardman (lead, INL); Don Anton (SRNL); Amgad Elgowainy (ANL); Bob Hwang (SNL): Mark Bearden (PNNL); Mark Ruth (NREL); Colin McMillan (NREL); Ting He (INL); Michael Glazoff (INL); Art Pontau (SNL); Kriston Brooks (PNNL); Jamie Holladay (PNNL); Christopher San Marchi (SNL); Mary Biddy (NREL); Geo Richards (NETL)

Future Electric Grid:

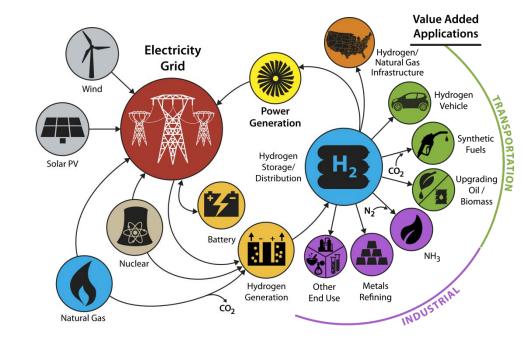
Charles Hanley (lead, SNL); Art Anderson (NREL); Bryan Hannegan (NREL); Chris San Marchi (SNL); Ross Guttromson (SNL); Michael Kintner-Meyer (PNNL); Jamie Holladay (PNNL); Rob Hovsapian (INL)

Foundational Science:

Adam Weber (lead, LBNL); Voja Stamekovic (ANL); Nenad Markovic (ANL); Frances Houle (LBNL); Morris Bullock (PNNL); Aaron Appel (PNNL); Wendy Shaw (PNNL); Tom Jaramillo (SLAC); Jens Norskov (SLAC); Mark Hartney (SLAC), Vitalii Pecharsky (Ames);

Analysis:

Mark Ruth (lead, NREL); Amgad Elgowainy (co-lead, ANL); Josh Eichman (NREL); Joe Cordaro (SRNL): Salvador Aceves (LLNL); Max Wei (LBNL); Karen Studarus (PNNL); Todd West (SNL); Steve Wach (SRNL): Richard Boardman (INL); David Tamburello (SRNL); Suzanne Singer (LLNL)

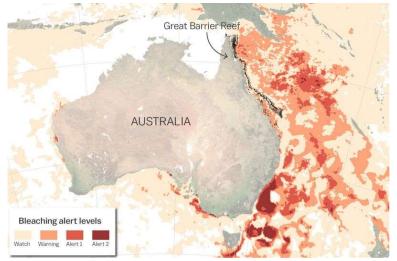

Alex Harris (BNL)

Stakeholder Groups - Workshops - Roadmaps

- Nuclear
- Wind
- Solar
- Fossil
- Grid/Utilities
- Regulators
- Electrolysis
- Industrial Gas
- Auto OEMs/supply chain
- Fuels Production (Big Oil, Biomass)
- Metals/Steel
- Ammonia
- Analysis
- Investors

Blue: High engagement and support

Green: Engaged with interest/support


Orange: Limited engagement

Black: Little engagement

Next Workshop Houston May 23-24, 2017

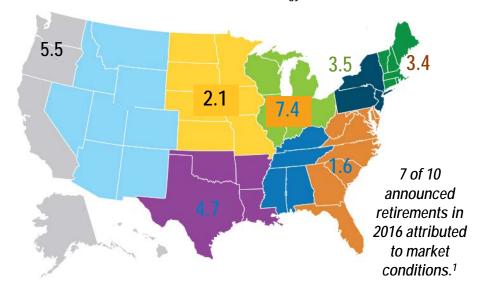
Future Impact?

The Great Barrier Reef's catastrophic coral bleaching, in one map

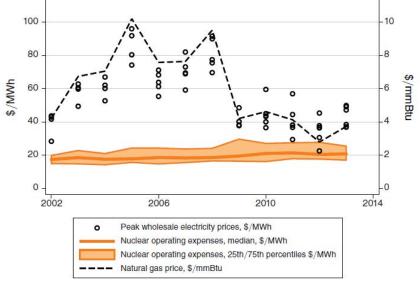
Mysterious Whale Swarms Perplexing Scientists

"Super-groups" of up to 200 humpback whales—a normally solitary species—are gathering off South Africa.

Images:

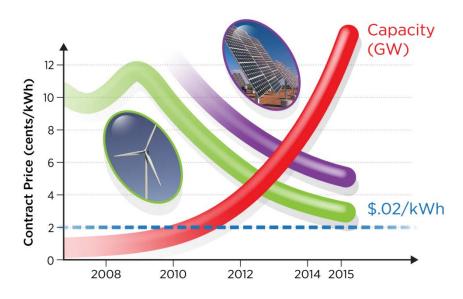

- 1. http://www.msn.com/en-gb/travel/news/the-great-barrier-reef%e2%80%99s-catastrophic-coral-bleaching-in-one-map/ar-BBA1t2n?li=BBoPU0T
- 2. http://news.nationalgeographic.com/2017/03/humpback-whales-swarms-south-africa/

Back up slides

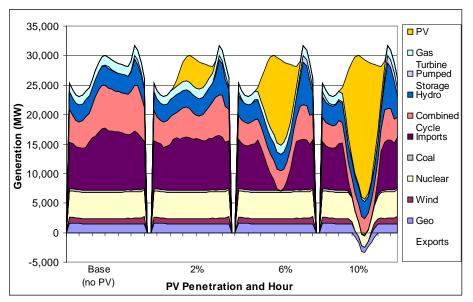

Nuclear Energy Impacts

Nuclear Plants at Risk by 2030, or Recently Retired (GW) 1

1. Source: U.S. DOE Quadrennial Energy Review, 01/2017

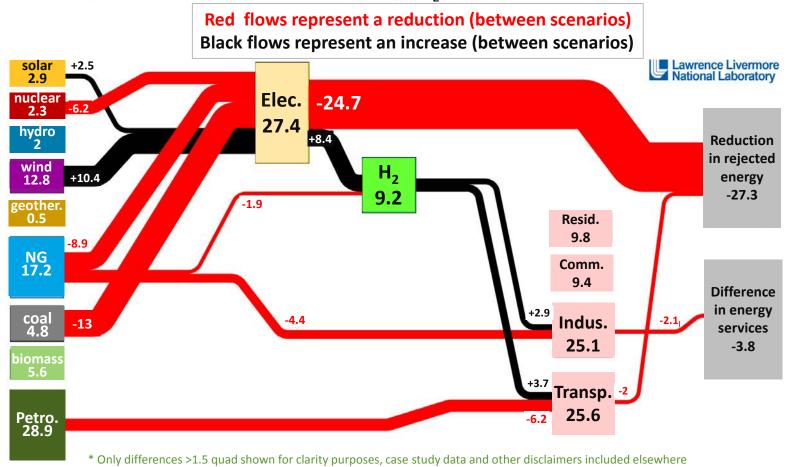


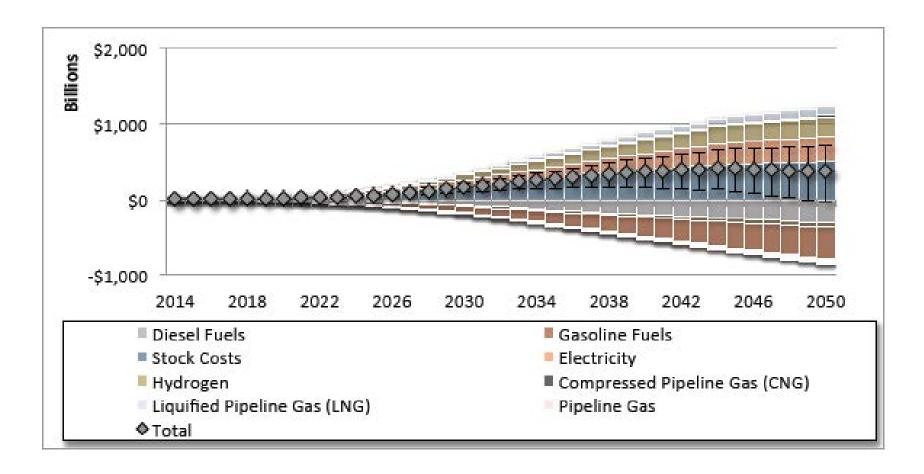
Source: L. Davis and C. Hausman, American Economic Journal, Applied Economics, 2016 Market Impacts of a Nuclear Power Plant Closure


Actual cost of electricity production by nuclear plants in the United States

Renewable Energy Impacts

Source: (Arun Majumdar) 1. DOE EERE Sunshot Q1'15 Report, 2. DOE EERE Wind Report, 2015


Denholm et al. 2008


Evolving H₂@Scale vision/message

- Quantifying energy-system wide value proposition
 - Based on Scenario Development (like that shown below)

Energy Use difference between 2050 high-H₂ and AEO 2040 scenarios (Quad Btu)

Energy System-Wide Models (E3)

There are a lack of energy system-wide models.

Hydrogen tends to be prominent.

High cost uncertainties exist, but costs don't appear prohibitive.

Assessing Economic Impact

ICF Results using E3 inputs

RESULTS SUMMARY: NATIONAL IMPACTS

National Level GDP (\$ Billion)

	2020	2025	2030	2040	2050
Reference Case	\$18,745	\$20,708	\$22,765	\$26,746	\$31,317
High Renewables	\$18,772	\$20,760	\$22,910	\$26,959	\$31,607
Difference	26	52	145	213	290
% Change	0.1%	0.3%	0.6%	0.8%	0.9%
Mixed Case	\$18,770	\$20,777	\$22,909	\$26,921	\$31,500
Difference	24	69	144	175	183
% Change	0.1%	0.3%	0.6%	0.7%	0.6%

GDP impact trends are similar to the employment results

- Impacts comparable across both scenarios around 2030
 - About a half percentage point increase over the Reference Case
- High RE Case shows more pronounced impacts in the long run
 - Close to a full percentage point more than the Reference Case

icfi.com | Passion. Expertise. Results.