H2@Scale: Research Needs & Outreach

Energy Efficiency & Renewable Energy

Enabling Resiliency of Domestic Energy Sectors and Industry

Washington, D.C.

05/04/2017

Neha Rustagi

Fuel Cell Technologies Office Office of Energy Efficiency and Renewable Energy U.S. Department of Energy

H2@Scale 2016 Workshop

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy
Fuel Cell Technologies Office | 2

Nuclear Hybridization with electrolyzers to improve economics

Solar Power Storage of heat in metal hydride beds

Manufacturing Lower cost of H₂ production, and develop value-add applications

Fossil Energy H₂ can be produced through coal gasification and chemical looping

Bioenergy H₂ is necessary for biofuel production, and can also be produced from bio-oil and biogas

Geothermal Power H₂ can be recovered from geothermal steam, and electrolyzers can be integrated with geothermal power

Workshop discussed cross-cutting potential of hydrogen.

Electrolyzer integration with Energy Transmission

ENERGY Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 3

Integration with Nuclear Generation

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 4

Value Proposition

Hybridization of H₂ production with next generation nuclear generation can monetize process heat

Generation IV Nuclear Reactors (2030-2050)

- Very high temperature*
- o Sodium-cooled
- Gas-cooled fast*
- Supercritical Water*
- Lead-cooled fast
- Molten salt*

- * Outlet temperature: 500-
- 1,000°C, compatible with high-

temperature H₂ production

Possible U.S. Nuclear Capacity

Source: U.S. DOE Office of NE Vision and Strategy for the Development and Deployment of Advanced Reactors

Examples of Foundational Research Needs

(aligned with HydroGEN)

High-temperature Electrolysis

- · Elucidation of degradation mechanisms
- Development of materials for durable high current density operation
 - Determination and improvement of load following capability

Thermochemical

- Discovery of redox materials capable of efficient H₂ production
- Development of high-temperature materials for thermochemical reactors

Wide-scale Hydrogen Infrastructure

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 5

Examples of Research Needs

• Delivery and Storage

- <u>High-throughput compression</u> for pipelines
- <u>Purification technologies</u> to enable co-leveraging of infrastructure
- ✓ Liquid carriers

Liquefaction

- Advanced <u>expanders and</u> <u>compressors</u> for mixed refrigerants
- <u>Non-mechanical</u> approaches (e.g. magneto-caloric materials, thermoacoustics)
- ✓ <u>Small-scale</u> technologies

Cross-Cutting

- Capture of H₂ from existing <u>process</u> <u>streams</u> (e.g. chlor-alkali plants)
- ✓ Development of <u>skilled workforce</u>

Current Status

Value-Add Applications for H2: Ironmaking

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 6

Benefits of Electric Arc Furnaces

- Lower cost feedstock (recycled scrap)
- Cyclability
- Scalability
- Purity of resulting iron

Ongoing Research

Engineering of DRI reactors to manage kinetics in H₂ (e.g. flash ironmaking technology)

Drivers for Demand

Oil Refining

- Quality of crudes
- Air quality (removal of sulfur and aromatics)
 - Demand for gasoline

Ammonia

- Demand for food crops
 - Demand for biofuels
- Emerging applications, such as NOx control
 - Demand for liquid carriers

Technical and Market Needs

- Low-cost distributed H₂ production
- Co-electrolysis for methanol synthesis
- Identification of opportunities to use O₂ from electrolysis
- Valuation of renewable H₂ in regulatory frameworks
- Creation of "Sustainability Index" for investors

Next Steps

hile maintaining excellent performance as well as designing high temperature electrolysis syste

Challenge	R&D Needs	TRL
Cost	<u>PEM</u> : Implementation, including scale-up, of recent lab scale R&D cell component advances (e.g. electrodes with 5-10x lower PGM content) into commercial stack products.	4
	<u>PEM</u> : Development of manufacturing innovations and technologies for high volume production of MW- to GW-scale electrolyzer cells and stacks (e.g. roll-to-roll processing of membranes and electrodes).	4-5
	<u>AEM</u> : Investigation and validation of low cost material options for catalysts, bipolar plates, etc. that should be stable in AEM basic environment	2-3
	<u>SOEC</u> : Development of system designs that optimize electrical and overall efficiency, including efficient integration with industrial process heat (e.g. nuclear reactors)	3-4
	<u>Crosscutting</u> : Development of BOP components (e.g. power electronics) specific to electrolyzer operating conditions/ requirements.	3-5
Performance	<u>PEM</u> : Further optimization of cell (membrane, catalyst/electrode) and stack (bipolar plates, porous transport layer) components and interfaces for electrolyzer operating conditions.	4

➢ FY16-FY17

- H2@Scale Workshop to obtain feedback that guided roadmap development
- Preliminary analysis to determine technical potential of hydrogen supply and demand

➢ FY17-FY18

- H2@Scale Roadmap identifying and prioritizing RD&D needs
- Analysis to assess potential supply and demand of H2@Scale under future market scenarios

May 23-24, 2017

 H2@Scale workshop in Houston, TX to assess regional challenges, and obtain feedback on draft sections of roadmap

> June 10, 2017

 Review session at FCTO's Annual Merit Review to obtain feedback on technoeconomic analysis, and roadmap

Value Proposition for H2@Scale

- Grid stability with increasing penetration of non-dispatchable power
- Enhancing economics of next generation baseload (hightemperature nuclear reactors)
- Enabling distributed chemicals production
- Reduction in emissions from steelmaking and oil refining

Next Steps

- Foundational research to lower the costs of water splitting, H₂ infrastructure, and value-add applications for H₂
- Identification of markets and regions that will be early adopters

Thank You

Neha Rustagi

Hydrogen Production and Delivery

Fuel Cell Technologies Office

neha.Rustagi@ee.doe.gov

hydrogenandfuelcells.energy.gov