

Utility Perspectives on the Hydrogen Economy

Noah D. Meeks, Ph.D. Sr. Research Engineer Southern Company Services, Inc.

DOE Hydrogen and Fuel Cell Technical Advisory Committee (HTAC) May 4, 2017

America's Premier Energy Company

2

Southern Company Overview

- Providing clean, safe, reliable and affordable energy for customers and communities
- Developing the full portfolio of energy resources
 - -Nuclear
 - -21st century coal
 - -Natural gas
 - -Renewables (solar, biomass, wind, hydro)
 - Energy efficiency
- Industry leader in energy innovation
 - Incubating new products and services at the Energy Innovation Center
 - Engaged in robust, proprietary research and development
 - Company-managed R&D investments totaling approximately \$2.1 billion since 1970

Today, utilities generate and deliver energy carriers in real time.

Today, utilities generally miss a key energy carrier: petroleum.

What if hydrogen becomes an alternate energy carrier for utilities?

Natural Gas

- Easily stored and transported
- Abundant
 infrastructure
- Emits CO₂ at point of use

Electrons

Difficult to store/transport

•

- Abundant infrastructure
- No emissions at point of use
- Not suitable for some applications

Hydrogen

- Easier to store and transport
- Infrastructure
 needed
- No emissions at point of use
- Versatile
 applications

Petroleum

- Easily stored and <u>transported</u>
- Abundant infrastructure
- Emits CO₂ at point of use
- High energy density

Hydrogen is a storable energy carrier which may enable a utility to provide energy with a high capacity factor to existing customers, as well as open up new markets.

5 Ways that Utilities could participate in the Hydrogen Economy

- 1. Energy storage to achieve high capacity factor and maximize renewables
- 2. Supplement energy transmission with hydrogen
- 3. Reduce the carbon footprint and maximize heat value for "green" natural gas
- 4. Provide hydrogen for dispatchable distributed generation
- 5. Provide the primary energy source for hydrogen for transportation

Solar has limited value for capacity

Solar/wind are highly intermittent.

Solar 180 200% Power (% AC Nameplate) 160 150% 140 120 100% 100 MM 50% 80 0% 60 4:00 PM 8:00 PM 4:00 AM 8:00 AM 12:00 PM 40 ---- DC Power (2016) AC Output (Today) 20 DC Power (2030) AC Output (PV+ES, 2030) 0 21:36 1:12 9:36 16:48 4:48 8:24 12:00 15:36 19:12 2:24 13:12 22:48 6:00

Wind

Renewables mis-matched with seasonal demand

■ Monthly SO+PJM+MISO Load (GWh) ■ Monthly Solar (GWh)

Electricity is generated according to dispatch curve.

System load (MW)

- When renewables are available, they displace generation from coal/CC/CT.
- When renewables are unavailable, coal/CC/CT is dispatched using energy stored at the plant (coal pile).
- "Coal pile storage" is cheap and energy dense but operationally challenging.

Sufficient grid energy storage can shrink capacity needs and increase capacity factor.

System load (MW)

- Units would dispatched to support average energy needs
- Renewables are maximized as intermittency covered
- Capacity factors are increased
- Susceptibility to fuel price volatility diminished

Grid Energy Storage Options

<u>Technology</u> Batteries Pumped Hydro Compressed Air Thermal - Physical Thermal - Chemical Hydrogen P2G Hydrogen P2P

Round Trip Efficiency	F
95%	
75%	
25-70%	
40%	
40%	
27-40%	
33%	

response time

seconds minutes minutes mins to hours mins to hours minutes hours

Scalability linear volumetric volumetric volumetric volumetric volumetric volumetric

small applications geographically limited may require pre-heating

Options to store, move, or sell

Figure 1: Energy Storage Technologies, Capacity, Timescale, and Applicability (Source: Hydrogenious (www.hydrogenious.com))

Hydrogen for Transportation (and pipeline energy transmission)

Critical parameter for transportation = mass energy density (BTU/lb)

Battery pack: 85 kWh / 1323 lb = **0.064 kWh/lb** (**219 BTU/lb**)

(Source: Car & Driver)

5 kg H₂ + 87.5 kg H₂ storage + 56 kg stack weight = 327 lb total power plant weight 568,000 BTU in the H₂ 1736 BTU/lb thermal ~ 860 BTU/lb electrical (Source: InsideEVs.com)⁵

Even today, hydrogen can decarbonize transportation.

- FCEV may allow for decarbonization of additional vehicles that would not switch from fossil to BEV.
- Hydrogen in the near-term may be produced from steam-methane reforming (SMR).

Energy Source	Energy Carrier	CO ₂ emissions (Ib CO ₂ /kWh _e)
100% Coal	Electrons	2.1
100% Natural gas	Electrons	1.22
33% coal 33% gas 33% non-carbon (EIA 2015)	Electrons	1.1
100% natural gas	Hydrogen	1.33

*assume 50% thermal to electrical efficiency for hydrogen fuel cell

Hydrogen generation has Carbon footprint challenges.

EIA U.S. electricity grid projections

SMR H₂ production: 10 lbCO₂/lb H₂ \rightarrow 5100 BTU_{th}/lb CO₂ \rightarrow 2550 BTU_e/lb CO₂ CH₄ combustion \rightarrow 8500 BTU_{th}/lb CO₂ \rightarrow 4250 BTU_e/lb CO₂ Oil and other Other renewables Wind **Electrolytic H**₂ \rightarrow 19.5 lb CO₂/lb H₂ Solar (67% efficient; 50 kWh/kg H2 Nuclear required; EIA case: assuming Clean Natural gas Power Plan is implemented) Zero-carbon energy is required to drive carbon benefits from

drive carbon benefits from hydrogen economy.

Zero-carbon energy options

Renewables

- Poor energy density
- Intermittent
- EROI varies geographically
- Low OpEx

Fossil with CCS

- Good energy
 density
- Abundant infrastructure
- Dispatchable
- Requires long-term, large-scale CO₂ sequestration
- Variable/high OpEx

Nuclear*

- High energy density
- Dispatchable
- Waste recycle/storage required
- Low OpEx

Nuclear Reactor Design \rightarrow

FastThermalBreedervsBurnerLiquid FuelSolid FuelThoriumUranium

Salt, Water, Gas, Metal

COOLANT CHOICE

Advanced Reactor Features

Advanced Nuclear Research

- SCS Selected for <u>\$40M DOE Award</u> -Molten Chloride Fast Reactor (MCFR)
- Project will answer key technical questions related to the development of MCFR
 - Demonstrate the relevant phenomena and operations (electrically heated ~2MW)
 - Prepare license application ~30MW Test Reactor
- MCFR meets Southern's goals of <u>Clean, Safe, Reliable, and Affordable</u> energy for the foreseeable future

Thermochemical Water Splitting

 $2 H_2 O \rightarrow 2 H_2 + O_2$ **Electric Power** High-temp Generation **Heat Source** mediated by thermochemical cycle Electric Power Thermal Energy Metal – metal oxide >900°C H, Procuct Copper – copper chloride Sulfur iodine Conc. H2SOA Hybrid sulfur (electricity & heat used) Sulfuric Acid Electrolyzer 300+ other cycles **Concentration &** and Auxiliaries Decomposition Dilute H2SO4 SO, SO2 Utilization of both heat and electrons Recycle 02 H₂O 2 steps – 3 unit operations ٠ Feed All fluid phases SO₂ and O₂ Separation

O₂ By-Product

Liquid Hydrogen Carriers

	Wt% H2	Energy density kWh/L
Liquid Organic	16	9.7
Biodiesel	14	9.2
Methanol	12.6	4.67
Ethanol	12	6.3
Formic acid (88%)	3.4	2.1
Ammonia	17.8	4.32
Liquid Hydrogen	100	2.54

- Increased volumetric energy density using carrier molecule
- More amenable to existing infrastructure
- Heat integration to improve efficiency

Hydrogenious (LOHC) Process

•No molecular hydrogen stored

- •High storage capacity of 6.23 wt% (630 Nm³ H₂ /m³ LOHC)
- •Storage medium is dibenzyltoluene liquid organic hydrocarbon
- •Low flammability and non-explosive even when loaded with hydrogen
- •Fully reversible loading and unloading of LOHC material possible
- •Storage and transport in commercially available diesel-tanks possible

Hydrogen Research Efforts

- CRADA with Savannah River NL on Hybrid-sulfur process
- Developing framework around thermochemical cycles paired with MSR (URS/AECOM)
- Dehydrogenation of liquid organic hydrogen carrier (LOHC) demonstration
- Ongoing discussions:
 - -Mitigating California duck curve with electrolysis
 - Southeast-based electrolyzer demonstration
 - -DOE roadmapping for thermochemical hydrogen
 - Methanolysis demonstration
 - -EPRI-led hydrogen utility demonstration
- Ongoing in-house work:
 - Valuation of hydrogen based on drivers
 - Technology assessments
- Key Collaborators: DOE FCTO, DOE NE, DOE ARPA-E, NREL, SRNL, EPRI, UC-Irvine NFCRC, IEA HIA, electrolysis companies (Proton), fuel cell companies (Versa Power), Auto OEMs

Conclusions

- Hydrogen is flexible energy storage medium with the opportunity to maximize renewable penetration
- Nuclear is an important zero-carbon energy source
- Advanced nuclear has additional advantages including high-temperature heat for thermochemical water splitting
- Hydrogen or liquid H₂ carriers allow for high density energy transmission
- Hydrogen can decarbonize transportation and couple transportation energy to primary energy sources handled by utility
- SCS is leading industry with studies and pursuing industry-led demonstrations

Contact Info

Noah D. Meeks, Ph.D. Sr. Research Engineer R&D, Southern Company Services, Inc.

600 18th Street North Birmingham, AL

1-205-257-6136

NDMEEKS@SOUTHERNCO.COM