

NATIONAL ENERGY TECHNOLOGY LABORATORY

Clean Economic Energy in a Carbon Challenged World

Wayne A. Surdoval

Technology Manager, Fuel Cells National Energy Technology Laboratory United States Department of Energy

Department of Energy

FY 09 Fossil Energy Fuel Cell Program Solid State Energy Conversion Alliance (SECA)

SECA Program Structure

Non-Exclusive License

- Ready market of potential licensees
- Best designs vs. highest bidder
- Promotes Collaboration Limits Redundancy

SECA Industry Teams & Major Subcontractors

6

NATIONAL ENERGY TECHNOLOGY LABORATORY

00076 10-22-08 WAS

7

NATIONAL ENERGY TECHNOLOGY LABORATO₹Y

00076 7-25-08 WAS

DOE's Office of Fossil Energy Advanced (Coal) Power Systems Goals

- 2010:
 - 45-50% Efficiency (HHV)
 - 99% SO₂ removal
 - NOx< 0.01 lb/MM Btu</p>
 - 90% Hg removal
- 2012:
 - 90% CO₂ capture
 - <10% increase in COE with carbon sequestration
- 2015
 - Multi-product capability (e.g, power + H₂)
 - 60% efficiency (measured without carbon capture)

Solid State Energy Conversion Alliance Performance Assessment Rating Tool (OMB) 2010

Stack Cost ~ \$100/kW stack

Capital Cost < \$400/kW system

Maintain Economic Power Density with Increased Scale ~ 300mW/cm2

Ref: 2002 Goal: 2010

Mass customization – stacks used in multiple applications....large and small systems

How Big are the U.S. Markets? Coal

SECA Fuel Cells available for installation in 2018 New Coal Capacity, 2018 – 2030.....110 GW Average SECA Fuel Cell Production 9.2 GW/yr

EIA Annual Energy Outlook (AEO) for 2007 pp. 82-83

Atoms for Peace 1953

October 22, 1953: The Atomic Energy Commission announces that an AEC-owned demonstration power plant of 60 MW will be built at Shippingport, PA, jointly by Westinghouse Electric Corporation and Pittsburgh's **Duquesne Light** Company under the direction of the U.S. Navy/AEC Naval Reactors Branch.

The more important responsibility of this atomic energy agency would be to devise methods whereby this fissionable material would be allocated to serve the peaceful pursuits of mankind. Experts would be mobilized to apply atomic energy to the needs of agriculture, medicine and other peaceful activities. A special purpose would be to provide abundant electrical energy in the powerstarved areas of the world.

Dwight D. Eisenhower, President of the United States of America,

to the 470th Plenary Meeting of the United Nations General Assembly Tuesday, 8 December 1953

Photograph of the Shippingport Atomic Power Station in Shippingport, Pennsylvania, the first full-scale nuclear power generating station in the United States which began operating in 1957.

How Big are the U.S. Markets? Overnight Trucks

Average Size of a Truck APU – 5kW Average Annual Production – 200,000 units Average SECA Fuel Cell Production.... 1 GW/yr

Fuel Cells in a DOD Application's

• DOD Requirements

- Extend mission length
- Quiet
- Combined functions power, heat and water
- Volume and weight
 - Operate with High Specific Energy Fuels Liquids
- DOE's power density targets (based on cost) minimize stack size and volume to diminishing returns.
- Further size and weight improvements Focus on the Balance of Plant

Solid State Energy conversion Alliance Fuel Cells Technology Timeline

Impact of Efficiency on COE

Advanced Power Systems With CO2 Capture, Compression and Storage					
	PC Baseline	IGCC Baseline		IGFC Atmos.	IGFC Press.
Efficiency HHV (%)	27.2	32.5		42.8	57.3
Capital Cost \$/kW	2,870	2,390		1,991	1,667
Steam Cycle % Power	100	37		26	2
Cost-of-Electricity ¢/kW-hr	11.6	10.6		8.5	7.3

The Benefit of SOFC for Coal Based power Generation, Report Prepared for U. S. Office of Management and Budget, 30OCT07

Raw Water Consumption Comparison

¹ System includes 100% carbon capture and CO_2 compression to 2,215 psia ² System includes 90% carbon capture and CO_2 compression to 2,215 psia

NATIONAL ENERGY TECHNOLOGY LABORATORY

Current & Future IGCC Technologies with Carbon Capture

Case	Description
14	Reference: Slurry Feed Gasifier / Cryogenic ASU / Cold Gas Cleanup wcc / 7FB Syngas Turbine / 80 % Capacity Factor
15	Coal Feed Pump / Cryogenic ASU / Cold Gas Cleanup wcc / 7FB Syngas Turbine / 80 % Capacity Factor
16	Coal Feed Pump / Cryogenic ASU / Cold Gas Cleanup wcc / 7FB Syngas Turbine / 85 % Capacity Factor
17	Coal Feed Pump / Cryogenic ASU / Warm Gas Cleanup wcc / 7FB Syngas Turbine / 85 % Capacity Factor
18	Coal Feed Pump / Cryogenic ASU / Warm Gas Cleanup wcc / 2010-AST Syngas Turbine / 85 % Capacity Factor
19	Coal Feed Pump / Ion Transport Membrane (ITM) / Warm Gas Cleanup wcc / 2010-AST Syngas Turbine / 85 % Capacity Factor
20	Coal Feed Pump / Ion Transport Membrane (ITM) / Warm Gas Cleanup wcc / 2015-AST Syngas Turbine / 85 % Capacity Factor
21	Coal Feed Pump / Ion Transport Membrane (ITM) / Warm Gas Cleanup wcc / 2015-AST Syngas Turbine / 90 % Capacity Factor
24	Catalytic Gasifier / Cryogenic ASU / Warm Gas Cleanup / Pressurized SOFC / 90 % Capacity Factor

19

Current & Future IGCC Technologies, DOE/NETL – 2008/1337, 16OCT2008

NATIONAL ENERGY TECHNOLOGY LABORATORY

(20)

(21)

NATIONAL ENERGY TECHNOLOGY LABORATØRY

Key Points

Separate Air & Fuel Streams / w/o Steam Plant

> 99 % Carbon Capture
> Near Zero Water Use

Single Cell Module Performance Planar Cell - Atmospheric

<u>250@.0.6 V</u>	<u>275@ 0.7V</u>	<u>400@0.7V</u>	<u>450@0.7V</u>	<u>600@0.7V</u>	<u>500 @ 0.8V</u>	<u>450@ 0.8V</u>
144 cm²	144cm ²	144cm²	144cm²	144cm²	144 cm²	550 cm²

SECA Industry Teams FY 2001 – FY 2007 5kW Systems - Complete

SECA Industry Team	Location	Prototype	NETL Validation
General Electric	Torrance, CA	Complete	Pass
Delphi	Rochester, NY	Complete	Pass
Fuel Cell Energy	Calgary, BC	Complete	Pass
Acumentrics	Westwood, MA	Complete	Pass
Siemens Power Group	Pittsburgh, PA	Complete	Pass
Cummins Power Gen.	Minneapolis, MN	Complete	Pass

	Size	Efficiency	Degradation	Availability	Cost
Target	3 – 10 kW	35 (LHV)	4%/1,000 hrs	90%	
Aggregate Team Performance	3 – 7 kW	35.4 – 41 %	2%/1,000 hrs	97%	\$724 - \$775/kW

SECA Industry Team Prototypes

26

FuelCell Energy

Acumentrics Advanced Power & Energy Technologies

NATIONAL ENERGY TECHNOLOGY LABORATORY

Peterbilt - Delphi Auxiliary Power Unit

- Delphi's SECA APU powered the Peterbilt Model 386's electrical hotel loads, including air-conditioner, radio, CB, lights, battery, & start-up.
- The Delphi SECA APU provided an average of 800 watts of electricity on diesel.
- The Delphi SECA APU addresses anti-idling regulations.

SOFCs in Unmanned Undersea Vehicles (UUVs)

<u>21UUV</u> (2-5 kW)

- > 100 In-Water Runs
- Fisher-Tropsch
- SECA Stacks and Blower
- Naval Undersea Warfare Center, Division Newport, (NUWCDIVNPT) successfully tested SECA SOFCs in extreme conditions. Used SECA Stacks (2 Developers) and SECA developed High Temperature Blower
- SOFC technology has the potential to greatly increase UUV mission time compared with current battery technology.
- Although SECA has a coal-based, central generation focus, spin-off applications are encouraged. Military applications like UUVs provide operating experience and independent validation for SECA.
- Cost and operational lifetime are not necessarily major concerns for military applications, as long as new mission capability can be delivered.

For More Information About the DOE Office of Fossil Energy Fuel Cell Program

•NETL website:

-www.netl.doe.gov

Reference Shelf

CDs available from the website

- •FE Fuel Cell Program Annual Report _2007
- 8th Annual SECA Workshop Proceedings
- •Fuel Cell Handbook (7th ed.)

Wayne A. Surdoval Technology Manager, Fuel Cells National Energy Technology Laboratory U. S. Department of Energy (Tel) 412 386-6002 (Fax) 412 386-4516 wayne.surdoval@netl.doe.gov •Office of Fossil Energy website:

-ww.fe.doe.gov

