

An Update on Toyota's Fuel Cell Vehicle Activities

Hydrogen and Fuel Cell Technical Advisory Committee

November 04, 2009

Robert Wimmer Toyota Motor North America

Issues that Influence Automobile Business

Hybrid is First Step

TOYOTA MODELS

Prius *Midsize 5 Door*

RX450h Luxury SUV

HS250h *Midsize Sedan*

Averaging over 20,000 hybrids sold per month in 2008

Camry Hybrid Midsize 4 Door

Highlander Hybrid Midsize SUV

GS450h *Premium Sport Sedan*

LS600h Flagship

E-A

The Big Picture

New technologies must be produced in large volumes to make a meaningful impact

Comparison of Energy Efficiency

ΤΟΥΟΤΑ

	Energy pathway	Well-to-Tank	Tank-to-Wheel	Well-to-Wheel *1	
		50%	50% ^{*1}	20% 40%	
FCHV-adv	Natural gas Reforming with membrane ▼ separation	67% *2	59%	40%	
	Hydrogen (70MPa)				
EV	Natural gas Combined cycle power ∳ generation Electricity	39%	85%	33%	
Gasoline HV (Prius)	Crude oil ↓ Refine ✔ Gasoline	84%	40%	34%	
Gasoline ICE	Crude oil ↓ Refine Gasoline	84%	23%	19%	

*1 Tank-to-Wheel efficiency: measured in the Japanese 10-15 test cycle *2 Difference of Well-to-Tank efficiency between 35MPa and 70MPa: approx. 2%

(Toyota Calculation)

FCs are tough to beat for well-to-wheels efficiency

Toyota FCHV Progress

Toyota is making excellent progress resolving technical challenges

ΤΟΥΟΤΑ

FCHV-adv

*1 in LA#4 cycle

	Overall length/ width/ height (mm)	4,735/ 1,815/ 1,685	Fuel	Туре	Pure hydrogen
Vehicle	Max. speed (mph)	96		Storage system	High-press. H ₂ tank
	Cruising range (mile)	455 *1		Max. storage pressure (MPa)	70
	Fuel economy (mile/kg H ₂)	72.4 ^{*1}		Tank capacity (kg H ₂)	6.0 (35 degC)

Fuel Cell System Technology

Key Technical Challenges for FC Vehicles

Cruising Range Improvement

FCHV-adv Real-World Range

Rush Hour in Los Angeles

- 2 FCHVs
- Over 400 miles / tank
- 68.3 miles/kg of H2

Fairbanks to Vancouver

- 2300 miles
- Over 300 miles / tank
- No mechanical problems

Key Technical Challenges for FC Vehicles

Demonstrated Cold Start Capability

Yellowknife, Canada

Cold weather performance similar to conventional vehicles

Cold Start Countermeasures

Management of water when starting at subfreezing temperature

Measures important for cold start capability:

- A) Optimum purge to reduce remaining water
- B) Increase of water storage capacity
- C) Accelerating stack temperature rise

Key Technical Challenges for FC Vehicles

Toyota FC Stack Durability

MEA durability is steadily improving under real-world conditions

FC System Durability

Testing indicates linear degradation to the equivalent of 25 years

Degradation During Start-up & Shutdown

1. Degradation due to potential change at starting

Votage at start-up and shutdown must be managed

Cold Start Degradation

Must minimize degradation from cold starts

FC Stack Durability Summary

Confirmed system durability of FCHV-adv:

- > 25-year equivalent durability on crossover
- Approximately 70% of initial performance after the equivalent of 25 years operation

Next steps: Develop countermeasures to enhance durability

- Reduce start/stop and cold start degradation
- Confirm correlation between laboratory and field test data

Key Technical Challenges for FC Vehicles

FCHV Cost Reduction

Approaches to FCHV Cost Reduction

ΤΟΥΟΤΑ FCHV

(1) Design

- 1. Simplify the system
- 2. Downsize and reduce weight of FC stack

(2) Materials:

Reduce the cost of FC-systemspecific materials

=> Important to cooperate with materials manufacturers

(3) Improve production technology

τογοτα

FC Stack Cost Reduction

TOYOTA FC Stack

Cell Voltage [V]

Current Density [A/cm²]

(1) Design: Downsize & reduce weight

(minimize materials)

- 1. Increase output density
- 2. Reduce number of parts
- 3. Improve joint/seal method
- 4. Decrease Pt catalyst loading

(2) Material: Improve durability & reduce cost

- 1. Electrolyte membrane
- 2. Separator (incl. surface treatment)
- 3. GDL, etc.

ΤΟΥΟΤΑ

Electrode Catalyst "Trilemma"

Current Density (A/cm²)

Must solve electrode catalyst "trilemma" to achieve FC stack cost targets

Hydrogen Tank Cost Reduction

(for resistance to H₂ gas pressure)

Liner (for H₂ sealing)

Cross-section of tank body

(1) Reduce CFRP used (by making thinner)

Tank dimension

- Optimize laminar structure (hoop winding / helical winding)
- Optimize L/D
- Optimize boss size
- (2) Reduce cost of CFRP
 - Aviation grade => general-purpose grade
 - Develop low-cost CFRP for high-pressure tank

Development of Production Technology

(1) Web handling technology

Progress of FC Technology Development

FC development is more than half way over the "Valley of Death"

Steps for Commercialization

California Infrastructure Concern

By the 2012, the demand for H_2 stations will far exceed supply if station deployment is not accelerated

Conclusions

TOYOTA

- Hydrogen is one of the future fuels Toyota is pursuing
- We continue to devote considerable resources to bringing a FC vehicle to market in the 2015 time frame
 - Cold start & range issues are mostly resolved
 - Durability & cost challenges remain
- "Green" fuels and high volumes are required for meaningful GHG benefit
- Deployment of hydrogen refueling infrastructure must accelerate for fuel cell vehicles to succeed

Thank You!

