

Update on Electrochemical Energy Storage R&D

Presented to Hydrogen and Fuel Cell Technical Advisory Committee

> Tien Q. Duong Office of Vehicle Technologies November 5, 2009

ENERGY Energy Efficiency & Renewable Energy

CHARTER

 Advance the development of batteries and other electrochemical energy storage devices to enable a large market penetration of hybrid and electric vehicles.

TARGET APPLICATIONS

- Power-Assist Hybrid Electric Vehicles (HEVs, FCVs)
- Plug-in Hybrid Electric Vehicles (PHEVs, FCVs)
- Battery Electric Vehicles (EVs)

GOALS

- 2010 FreedomCAR Goal (Conventional HEVs):
 - Develop a 25 kW Power-Assist HEV battery that costs \$500.
- 2014 DOE PHEV Battery Goal:
 - Develop a PHEV battery that enables a 40 mile all-electric range and costs \$3,400.

Energy Storage R&D Program Budget

ENERGY Energy Efficiency & Renewable Energy

- The FY2009 budget is \$69.4 million.
- The DOE battery R&D budget has tripled in the past 4 years.
- Recent budget increases have focused on PHEV battery development.
- The FY10 budget request is \$78 million.

R&D Program Activities

Energy Efficiency & Renewable Energy

The energy storage effort is engaged in a wide range of topics, from fundamental materials work through battery development and testing.

USABC Activity Focus

- Develop full battery systems through competitive subcontracts
 - All subcontracts are at least 50% cost-shared
- USABC deliverables tested and analyzed against
 performance targets using standardized test procedures
 - Performance testing at ANL and INL
 - Abuse testing at SNL
 - Thermal analysis and design support at NREL
 - Battery modeling/simulation support at ANL and NREL

- Battery Performance Targets are determined through;
 - s Establishing electric drive vehicle performance requirements (OEMs)
 - s Battery Performance Modeling and Simulation (ANL/NREL)
 - s Hardware-In-the-Loop Testing (ANL—supported by VSATT)
- Develop Battery Testing Protocols
 - s Develop battery performance and cycle life test protocols based on different EDV architectures (ANL/INL)
- Contract Deliverables tested according to established Performance and Abuse Testing procedures (ANL/INL/SNL)
- Complete list of Test Procedures posted at www.uscar.org

Progress Since Last Review for High Power Batteries (HEV)

U.S. DEPARTMENT OF			
EN	JE	RGY	

Energy Efficiency & Renewable Energy

FreedomCAR Energy Storage Goal Characteristics (Units)	2010 Goal (End of life)	2007 NAS Review	Current Status
Discharge Power (kW)	25 (10 sec)	25	25+
Available Energy (Wh)	300	300	300
Calendar Life (years)	15	10 - 15	12 - 15
Estimated Cost at 100,000 units/year	500	750 - 900	>936
Regen Pulse (kW)	20 (10 sec)	20	20+
Cycle Life profiles, (cycles)	300k	300k+	300k+
Maximum System Weight, (kg)	40	25	25
Maximum System Volume, (liter)	32	20	20
Cold cranking power, (kW at -30 C)	5 for 2 sec	3 - 5	3.2 – 5.1
Operating Temperature Range, (C)	-30 to +52	-10 - +40	-10 to +40

ENERGY Energy Efficiency & Renewable Energy

Energy and Power Density of USABC HEV Technologies 3 Sample Data Sets

Energy Efficiency & Renewable Energy

25kW HEV Battery Pack Cost

Calendar Life -- Two Sample Data Sets

Comparison of Li-ion Couples

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Couple	Nickelate/ Carbon	Mn spinel/ Carbon	Fe Phosphate/ Carbon	Mn spinel/ LTO
Life	+			Ι
Power		+		+
Energy	+			Ι
Abuse tolerance (materials level)	_		+	+

• Most HEV performance targets met by Li-ion batteries developed with DOE support.

- However, each chemistry has technical issues ranging from fundamental material properties to high manufacturing cost
- s Mature Li-ion chemistries have demonstrated more than 300,000 cycles and 10-year life (through accelerated aging)
- s R&D focus remains on cost reduction, improved abuse tolerance and the development of alternative technologies such as ultracapacitors.

Notable Accomplishments of USABC Battery Development Partners

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

- Johnson Controls-Saft (JCS)
 - Will supply lithium-ion batteries to BMW and to Mercedes for their Hybrids to be introduced in October 2009.
- A123Systems
 - Selling a 5kWh battery for Hymotion's Prius conversion.
 - Partnering with Chrysler on EV battery development.
- Compact Power/LG Chem
 - Will supply GM Volt PHEV battery

JCS high-power lithium-ion battery pack

A123 Systems high-power lithium-ion cell

CPI/LG lithium-ion battery pack for GM Volt

Pottom/Attributo	Goals		Current Status	Notes
Ballery Allribule	2012	2014	(10-mile)	
Available Energy	3.4 kWh (10 mile)	11.6 kWh (40 mile)	3.4 kWh	
Cost	\$1700	\$3400	\$3400 (10-mile)	@ 100,000 batteries /year
Cycle life (EV Cycles)	5,000	3000-5000	1,700-2,000	For mature technologies
Cycle life (HEV Cycles)	300,000	300,000	300,000	At low states of charge?
Calendar Life	10⁺ years	10⁺ years	3⁺ years	Life prediction is difficult
System Weight	60 kg	120 kg	80-120 kg	
System Volume	40 liters	80 liters	50-70 liters	

Key challenges: (1) Reducing cost, (2) Extending life (while operating in 2 discharge modes), and (3) Weight & volume.

DOE/USABC PHEV Battery Developers

A123 SYSTEMS	Develop batteries using nanophase iron- phosphate
Johnson SAFT	Develop batteries using a nickelate/layered chemistry
Compact power, inc / C Chem	Develop batteries using manganese spinel chemistry
Ener De Lithium Power Systems	Develop cells using nanophase lithium titanate and a high voltage spinel cathode material.
31	Develop and screen Nickel-Manganese- Cobalt cathode materials
<u>C E L G A R D</u>	Develop low-cost separators with high temperature melt integrity.
	Develop low-cost separators with high temperature melt integrity.

DOE Cost Share: \$12.5 Million per year (cost-shared by industry)

- In the long-term, new lithium battery chemistries with significantly higher energy densities need to be developed to enable PHEVs with a longer charge depleting range
 - High capacity positive electrode materials
 - Electrolytes stable at 5 volts
 - Alloy electrodes
- New materials with increased energy density mean
 - Less active material
 - Fewer cells
 - Less cell & module hardware
 - Reduced weight and volume

COST REDUCTION

Applied and Exploratory Research

ENERGY Energy Efficiency & Renewable Energy

50 projects, 10 Federal Laboratories, 12 Universities, \$23.5 million

Notable Accomplishments/ Commercialization Activities

Energy Efficiency & Renewable Energy

Toda BASF

Phostech Lithium

- Composite high energy cathodes
 - licensed to Toda and and to BASF
 - developed by Dr. Thackeray of ANL
- Conductive, electroactive polymers
 - licensed to Hydro Quebec, world's leading supplier of this material.
 - developed by Prof. Goodenough at Univ Texas
- Hydrothermal synthesis technique for LiFePO₄
 - licensed to Phostech, for production
 - developed by Dr. Whittingham at SUNY
- Conductive polymer coatings and a new LiFePO₄ fabrication method
 - used by Actacell Inc fabricate high power Li ion cells
 - developed by Prof. Manthiram at Univ Texas
- Polymer electrolytes for Li metal rechargeable batteries
 - Seeo Inc a start-up of Prof. Balsara (LBNL) will commercialize material
 - 2008 R&D100 award
- Nano-phase Li titanate oxide (LTO)/Manganese spinel chemistry
 - licensed to EnerDel
 - developed by Dr. Khalil Amine at ANL, 2008 R&D100 award

Vehicle Technologies Program

DOE/NETL has selected ten companies to focus on advanced materials development, safety, and manufacturing process improvement.

3M	Advanced high-energy anode materials	(TIAX	Internal short diagnostics & mitigation technologies
Angstron Materials	Hybrid Nano Carbon Fiber/ Graphene Platelet-Based		Internal short diagnostics & mitigation technologies
	High-capacity Anodes	Ener Del Lithium Power Systems	Develop technologies to mitigate abuse tolerance
NC State & ALE Inc	High-Energy Nanofiber Anode Materials	-BASF	High volume, low cost, manufacturing techniques
-FMC	Stabilized Li metal powder		for cathode materials
♦ Sion Power	Develop and improve lithium sulfur cells for EV applications	A123 SYSTEMS	Develop advanced, low cost electrode manufacturing technology

DOE cost-share: \$17.8 million (cost-shared by industry)

- R&D is focused on breakthroughs in critical enabling technology for HEV, PHEV, and EVs.
- Most HEV performance targets met by Li-ion batteries developed with FreedomCAR support.
 - Commercial introduction of lithium ion batteries has begun.
- Emphasis is evolving from high-power HEV systems to high-energy PHEV and EV systems.
 - Key challenges: (1) Reducing cost, (2) Extending life, (3)
 Weight & Volume, and (4) Abuse Tolerance.
 - A broad R&D portfolio has been developed ranging from battery development to exploratory (transformative & revolutionary) ideas to develop innovative solutions to address these issues