

High Temperature Nuclear Reactors for Hydrogen Production

Carl Sink

Advanced Reactor Technologies Program Manager Office of Advanced Reactor Technologies (NE-74)

November 18, 2014

Next Generation Nuclear Plant (NGNP) Mission and Program Objectives

Nuclear Energy

Mission: Demonstrate high-temperature gas-cooled reactor (HTGR) technology to produce electricity and high temperature process heat

Program Objectives

- Partner with industry to commercialize HTGR technology
- Collaborate with the Nuclear Regulatory Commission (NRC) to establish a licensing framework for HTGRs
- Draw upon the national laboratories, universities, and international community to perform the Research and Development (R&D) necessary to decrease the technical risk

Potential Contribution of Fission Reactors to Process Heat Industries

Nuclear Energy

VHTR—Very High Temperature Gas-Cooled Reactors; LWR – Light Water Reactors

NGNP – Features and Characteristics

- Helium cooled noble gas does not chemically react
- High outlet temperature 750°C or greater for high energy conversion efficiency and process heat uses
- Coated particle fuel excellent fission product retention under operating and accident conditions
- Passive safety features ensure public health and safety
- Small to medium power output good fit for industrial applications
- Improved fuel utilization up to three times the burnup of light water reactors

Key to HTGRs – Tri-Structural Isotopic (TRISO) Fuel

Fuel Element

Nuclear Energy

TRISO-coated fuel particles are formed into fuel spheres for pebble bed reactor

Half Section

5 mm Graphite Layer

Coated Particles Embedded in Graphite Matrix

08-GA50711-01

NGNP PROJECT STATUS

NEAC Review of NGNP Phase 1

Nuclear Energy

EPAct mandated review by Nuclear Energy Advisory Committee (NEAC) prior to proceeding to Phase 2

■ NEAC Report forwarded to Congress – October 17, 2011

DOE Response

- Continue Phase 1 R&D
- Postpone initiation of Phase 2 design activities
- Continue to engage NRC to ensure regulatory framework is in place to support commercialization of this technology
- Work to establish public-private partnership

NUCLEAR HYDROGEN PRODUCTION R&D

High Temperature Steam Electrolysis

Nuclear Energy

Accomplishments

- R&D on cell & stack manufacturing for high temperature steam electrolysis (HTSE).
- 1080-hour 15 kW integrated laboratory scale operation at Idaho National Laboratory.

Small-Scale Test Area at INL

Integrated Laboratory-Scale Experiment (>5,000NL/h, 15kW) at INL

Overview of Project Activities (FY12)

Nuclear Energy

Pressurized Test

Pressurized operation of 10-cell advanced technology stack at 1.5 MPa

- Required development of completely new test apparatus
- Upgrading of laboratory gas delivery systems to allow for pressurized operation

<u>4 kW Test</u>

- Demonstrate HTSE at 4kW scale for 1,000 hours with advanced technology, internally manifolded, electrode-supported cells
 - Required modification of test stand for higher flow rates and heat recuperation

Small-Scale Testing, Advanced Technology Cells and Stacks

Continue testing and characterization of advanced cells and stacks with a focus on performance (initial and long-term)

Analytical and Modeling Activities

- System analysis of biomass pyrolysis process for distributed production of synthetic crude / liquid fuels
- Economic analysis of distributed hydrogen production from HTSE

Pressurized Test (1.5 Mpa / 217.5 psi)

Nuclear Energy

11

Vessel and Test Fixture for Pressurized HTSE Test

4 kW Test of Advanced Cell Stack

Nuclear Energy

4 kW test stand, assembled

NGNP / HTSE Conceptual Design

Nuclear Energy

NGNP Concept for Large-Scale Centralized Nuclear Hydrogen Production based on High-Temperature Steam Electrolysis

Direct coupled to HTGR reactor for electrical power and process heat

High Temperature Gas-Cooled Reactors

- 600 MWth reactor could produce ~85 million SCFD hydrogen (similar to a large steam methane reforming plant) and 42 million SCFD oxygen
- Potential applications include petroleum refining, ammonia production, synthetic liquid fuels, hydrogen as a direct vehicle fuel

Thermochemical Cycle R&D Activities Under Nuclear Hydrogen Initiative (NHI) (ended FY 2009)

- Idaho National Laboratory—Membranes, catalyst testing
- Argonne National Laboratory (ANL)—Alternates cycles (Ca-Br), flowsheet analysis SO₃ electrolysis
- Oak Ridge National Laboratory (ORNL)—Inorganic membranes, materials
- Sandia National Laboratories (SNL)—Sulfur cycle development/testing, membranes, materials, heat exchanger development
- Savannah River National Laboratory (SRNL)—hybrid sulfur cycle development
- General Atomic (GA)—Sulfur Iodine Development
- Universities—process development, materials testing

Sulfur-Iodine (S-I) Cycle

Thermochemical R&D: Sulfur – Iodine Cycle

Nuclear Energy

Products (for SI)

Integrated Laboratory-Scale Experiment (60 NL/h) at GA

Sulfuric Acid Decomposer (~900°C)

Thermochemical R&D: Sulfuric Acid Decomposer

Nuclear Energy

Sulfuric Acid Decomposer (~900°C)

Thermochemical R&D: Hybrid Sulfur Cycle

Nuclear Energy

Hybrid-Sulfur

(1) $H_2SO_4 \rightarrow H_2O + SO_2 + 1/2O_2$ (2) $2H_2O + SO_2 \rightarrow H_2SO_4 + H_2$ Baseline SRNL approach: Anolyte consists of SO₂ dissolved in concentrated sulfuric acid

Thermochemical R&D: Hybrid Sulfur Cycle

Nuclear Energy

Hybrid Sulfur Chemistry

 $H_2SO_4 \leftrightarrow H_2O + SO_2 + \frac{1}{2}O_2$ (thermochemical; 800–900 C) $SO_2 + 2 H_2O \rightarrow H_2SO_4 + H_2$ (electrochemical; 80–120 C)

Net Reaction: $H_2O \rightarrow H_2 + \frac{1}{2}O_2$

Sulfur Dioxide Depolarized Electrolyzer (SDE)						
Anode Reaction:						
$SO_2 + 2H_2O \rightarrow H_2SO_4 + 2H^+ + 2e^-$	E _o = - 0.158 V					
Cathode Reaction:						
$2H^+ + 2e^- \rightarrow H_2$	E _o = 0.000 V					
Net Reaction:						
$SO_2 + 2H_2O \rightarrow H_2SO_4 + H_2$	E _o = - 0.158 V					

Cu-Cl Hybrid Thermochemical Cycle

Nuclear Energy

Accomplishments

- CuCl/HCl electrolyzer operation demonstrated by AECL.
- Lab-scale non-electrolysis steps successfully performed in 2011 by Canadian program.

Alternative Cycles Lab Work

			in the figure of the AEO/	
_	Hybrid Ca-Br – A	rgo	nne National Lab - 45%	
	 CaBr₂ + H₂O(g) 	=	CaO + 2HBr	750 C
	 CaO + Br₂ 	=	CaBr ₂ + ½O ₂ (g)	550 C
	• 2HBr(g)	=	$H_2 + Br_2(g)$	25 C
_	K-Bi – Penn State	e U	niversity	
	 0.3 K₃Bi + H₂O(g) 	=	KOH(l) + H ₂ (g) + 0.3 Bi	575 C
	• KOH(I) + 0.3 Bi	=	.5 O ₂ (g) + 0.5H ₂ (g) + 0.3 K ₃ Bi	575 C
_	Mg-I – University	of	South Carolina - 45%	
	• 6MgO + I ₂ (s)	=	$Mg(IO_{3})_{2}$ (s) + $5MgI_{2}$ (aq)	150 C
	• Mg(IO ₃) ₂ (s)	=	$MgO + I_2(g)$	600 C
	 5Mgl₂ + 5H₂O(g) 	=	5MgO + 10 HI(g)	400 C
	• 10 HI (g)	=	$5H_2(g) + 5I_2(g)$	500 C
_	Hybrid Cu-Cl – A	NL	- 42%	
	 2Cu + 2HCl(g) 	\rightarrow	$2CuCl(l) + H_2(g)$	450 C
	• 4CuCl	\rightarrow	$2CuCl_2 + 2Cu$	25 C
	• $2CuCl_2(s) + H_2O(g)$	\rightarrow	$CuO \bullet CuCl_2(s) + 2HCl(g)$	400 C
	 CuO•CuCl₂ (s) 	\rightarrow	$2CuCl(l) + \frac{1}{2}O_2(g)$	550 C
_	Hybrid Cl - Clem	sor	n University - 34%	
	• CI2(g) + H2O (g)	=	2HCI (g) + ½O2 (g)	850 C
	• 2HCI (g)	=	H2(g) + $CI2(g)$	75 C
_	Cu-SO ₄ Tulane l	Jniv	/ersity - 52%	
	• CuO + SO2 (g) + H2	O =	Cu SO4 + H2 (g)	25 C
	• CuSO4	=	CuO + SO2 (g) + ½O2 (g)	850 C

Thermochemical NERI Projects

- S-I Thermo-Physical Measurements
 - Mark Thies
 - Clemson University
- SO2 and HBr Electrolysis Studies
 - John Weidner
 - University of South Carolina
- S-I Modeling Studies
 - Shripad Revankar
 - Purdue University

International R&D Cooperation

- Generation IV International Forum (GIF) Very High Temperature Reactor (VHTR) Hydrogen Production Project
- Project arrangement in force since 2008
- 7 current members

International Sulfur Iodine Cycle R&D

Nuclear Energy

Accomplishments

- Lab-scale(1NL/h) test at Japan Atomic Energy Agency (JAEA).
- Bench-scale(30 NL/h) test at JAEA.
- "Semi-Integrated" lab-scale operation at elevated pressure by SNL, GA, & Consumer Electronics Association (CEA) in 2008; at JAEA in 2014.

Lab-Scale (1 NL/h) Test at JAEA

Bench-Scale (30 NL/h) Test at JAEA

Integrated Laboratory-Scale Experiment (60 NL/h) at GA

SUMMARY

NGNP and Hydrogen Path Forward

- Continue R&D in HTGR fuels, materials and code validation experiments
- Continue licensing efforts with the NRC
- Continue contract with industry to develop economic/business analyses regarding commercializing HTGRs, and to provide data and analysis to DOE that could inform DOE on R&D efforts
- NE-RE Hybrid Energy Study looking at future options for incorporating high temperature hydrogen production once HTGRs are available

