Estimates of BEV and PHEV market penetration Potential

Presented to the Hydrogen and Fuel Cell Technical Advisory Committee (public comment session) Washington, D.C. November 4, 2011

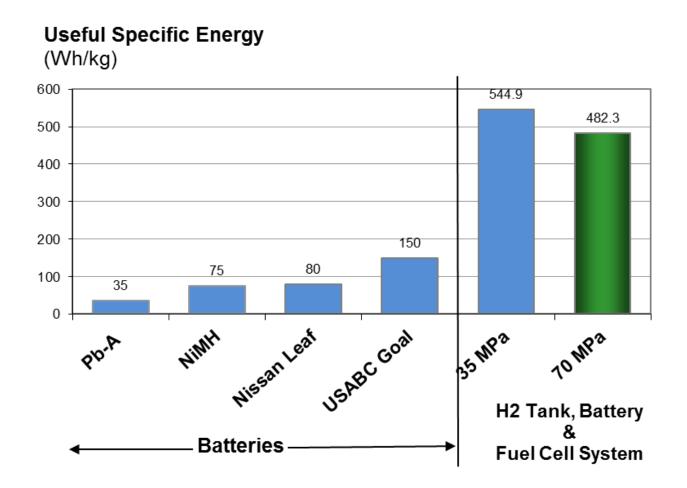
by C. E. (Sandy) Thomas, Ph.D., Clean Energy Consultant former-President H₂Gen Innovations, Inc. (ret.) Alexandria, Virginia

www.CleanCarOptions.com

Outline

- Market Penetration Potential
 - BEV size and range limitations
 - BEV Sales Potential in US

Why not longer range BEVs?


- Low Specific Energy (kWh/kg)
- Low Energy Density (kWh/liter)
- MASS COMPOUNDING

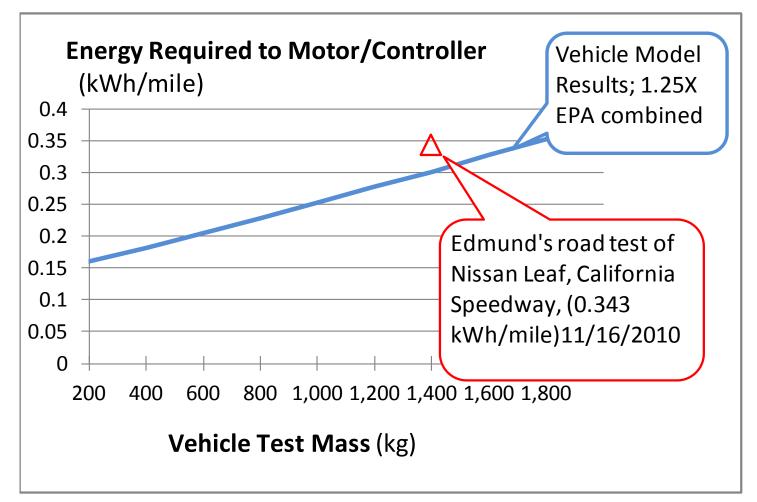
Nissan Leaf Battery Parameters compared to USABC long-term goals

	Specific	Specific	Power	Energy
	Energy	Power	Density	Density
	Wh/kg	kW/kg	kW/L	kWh/L
Nissan Leaf Battery	80	0.3	0.3	0.0261
USABC long-term				
commercialization				
goals	150	0.46	0.46	0.230

Nissan Leaf Battery: 24 kWh useable energy; 300 kg mass, 90 kW power & 918 liters volume (estimated from two orthogonal photos)

Useful Specific Energy

Mass Compounding


- Adding batteries to increase range requires:
 - Slightly larger mechanical structure
 - Slightly larger suspension systems
 - Slightly larger brakes
- Which requires still more batteries to provide range and acceleration required

Mass Compounding of Late Model US cars

- Malen & Reddy (U. of Michigan) determined that adding 100 kg of batteries to a vehicle requires 59.8 kg of added mass to non-powertrain vehicle subsystems*.
- The EV motor mass increases with increased vehicle mass
- **Battery mass** increases with increased vehicle mass to maintain safe acceleration and to achieve the desired range

 ^{*}D. E. Malen & K. Reddy, "Preliminary vehicle mass estimation using empirical subsystem influence coefficients," University of Michigan, May 9, 2007 (revised June 26, 2007), available at: <u>http://www.a-sp.org/database/custom/Mass%20Compounding%20-%20Final%20Report.pdf</u>

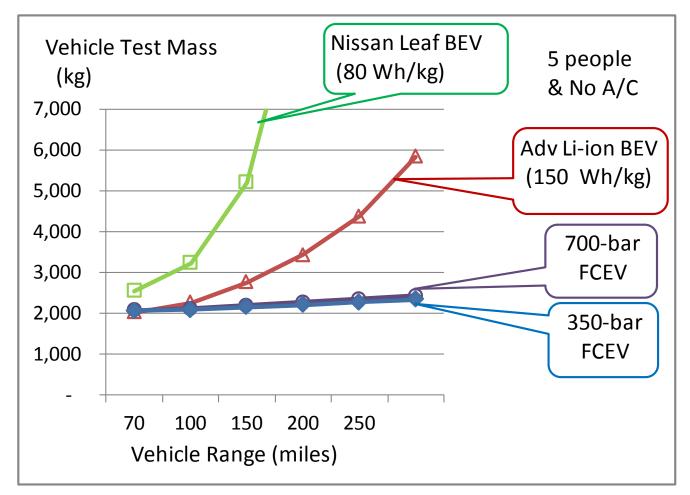
Energy per mile required from battery or FC

BEV test mass estimation with and without mass compounding

		Est Range	Battery capacity:			
	kWh/mile	Miles	24	kWh		
Model	0.337	71.2		2 people	1681 kg	
Edmund's road test	0.343	70.0		2 people	1681 kg	
Model	0.367	65.4		5 people	1921 kg	
			Leaf curb mass: 1521 kg			

work/vehicles/battery/Vehicle.XLS; Tab 'FUDS'; AC 654 - 10 / 11 ,

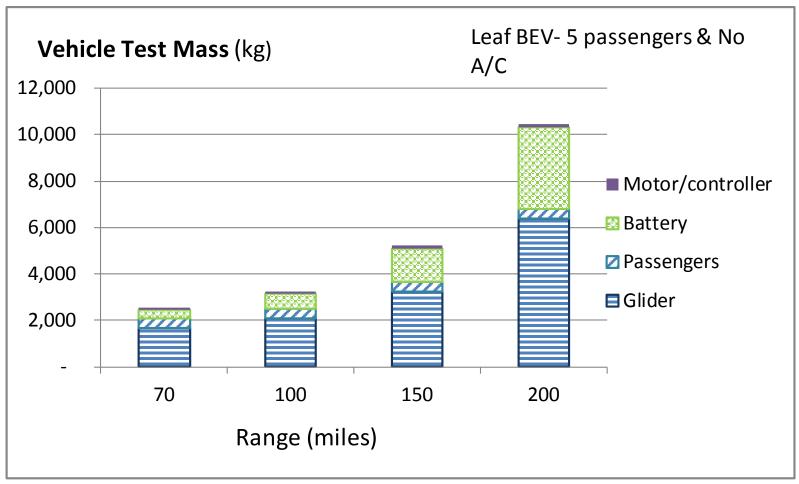
Without mass compounding: to increase range from 65 miles to 100 miles requires the addition of 35 miles x .367 kWh/mile = 12.8 kWh / .08 kWh/kg = 161 kg of extra battery for a total test mass of 1921 +161= **2,082 kg**

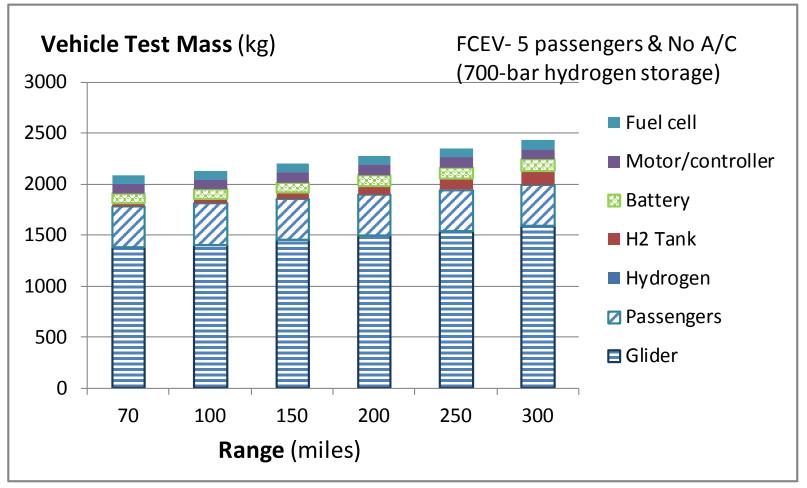

With mass compounding, the final BEV test mass for 100 miles range is **3,236 kg**, a 55% increase over the simple linear calculation!

Deloitte survey" Unplugged: electric vehicle realities versus consumer expectations*"

- 63% of potential EV buyers expect greater than 300 miles range on one charge
- 23% expect charging in less than 30 minutes

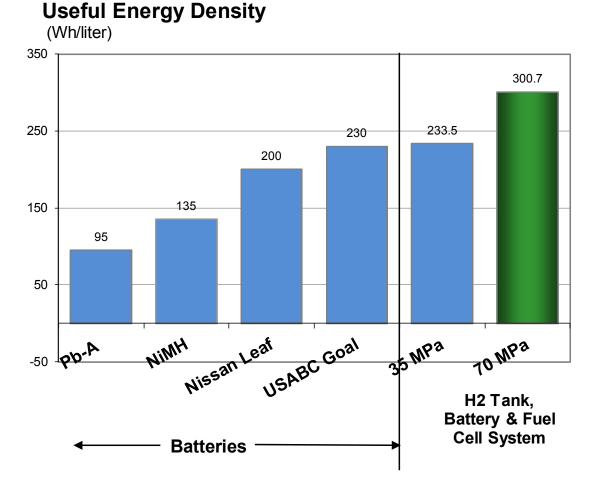
*Deloitte Survey "Unplugged: Electric vehicle realities versus consumer expectations" Published October 05, 2011, <u>http://www.foxnews.com/leisure/2011/10/05/survey-says-electric-cars-dont-meet-expectations-customers/</u>


Vehicle Test Mass with Mass Compounding for BEVs & FCEVs

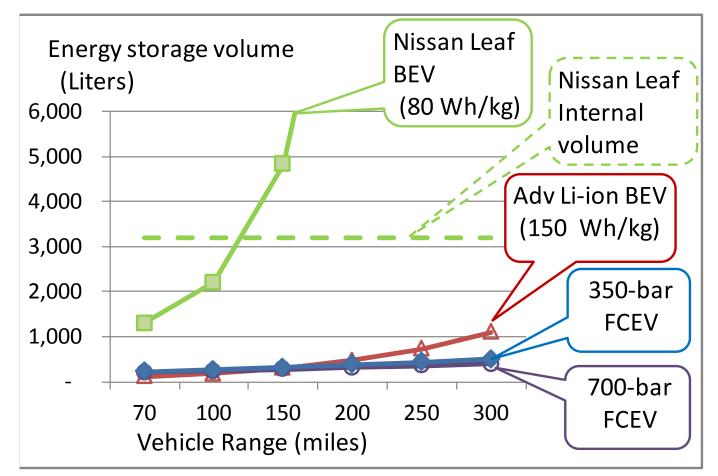

BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; BR58 - 10 / 9 /

"Adv Li-ion battery" assumes that the USABC long-term commercialization goals are achieved (150 Wh/kg; 230 Wh/Liter).

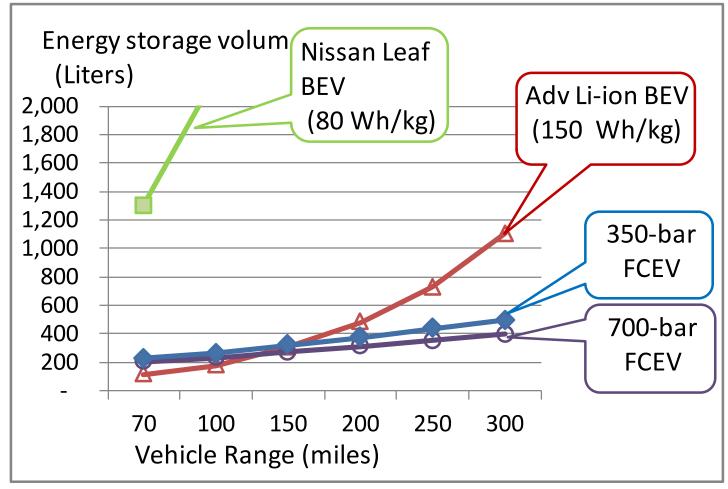
BEV Mass Compounding Elements



FCEV Mass Compounding Elements


BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; I163 - 10 / 11

Useful Energy Density


Battery & H2 Tank Wt_Vol_Cost.XLS; Tab 'Battery'; S37 - 10 / 25 /

Energy Storage Volumes for Nissan Leaf size BEVs and FCEVs

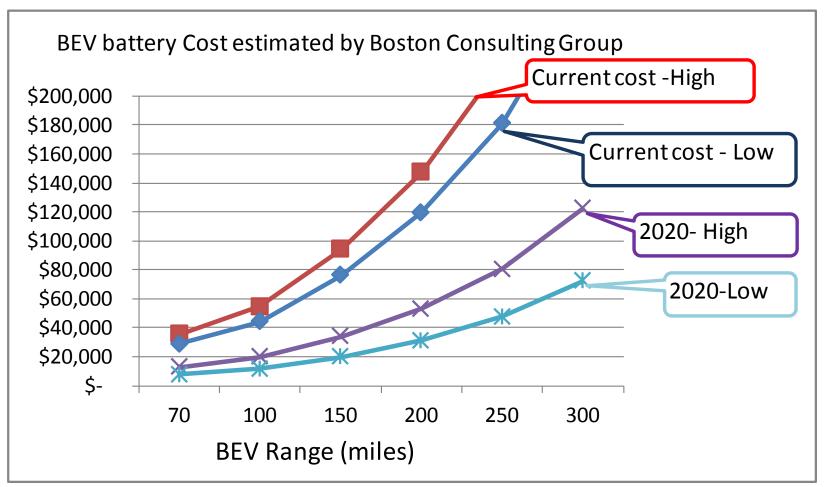
BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; BR41 - 10 / 9 /

Energy storage volume (expanded scale)

2011 BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; BX41 - 10 / 9 /

Advanced Li-Ion assumes USABC Long-Term Commercialization Goals are Achieved

Boston Consulting Group* Battery Cost Estimates

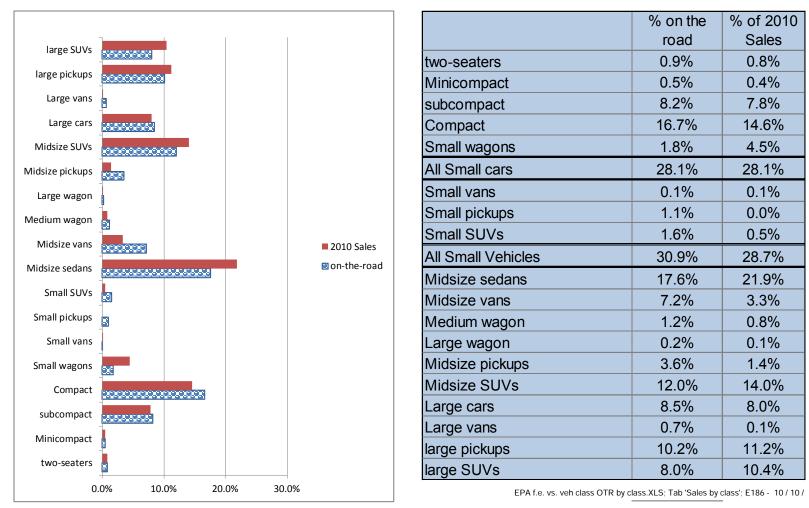

	Battery cost (\$/kWh)			
	Low	High		
Current Cost	\$990	\$1,220		
2020 costs	260	440		

work/vehicles/battery/BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; AD 104 - 10 / 25

* A. Dinger et al, "Batteries for Electric vehicles: challenges, opportunities and the Outlook to 2020, The Boston Consulting Group (no date). Available at: <u>http://www.bcg.com/documents/file36615.pdf</u>

BEV Battery Pack OEM cost estimates vs.

range


work/vehicles/battery/BPEV mass,vol,cost vs range charts RevB.XLS; Tab 'Equation-Leaf'; AL 103 - 10 / 25

BEV Market Penetration

Market Potential for BEVs

- Assuming that BEVs can only be sold for small vehicles, how many small vehicles are in the current US car fleet?
- And what % of GHGs and oil consumption do these small cars represent?
- (McKinsey & Company estimated that 50% of all vehicles in the EU that generate 75% of all GHGs are too big or travel too far to be affordably powered by batteries.

Distribution of US Car sizes

EPA f.e. vs. veh class OTR by class.XLS; Tab 'Sales by class'; Y206 - 10 / 10 / :

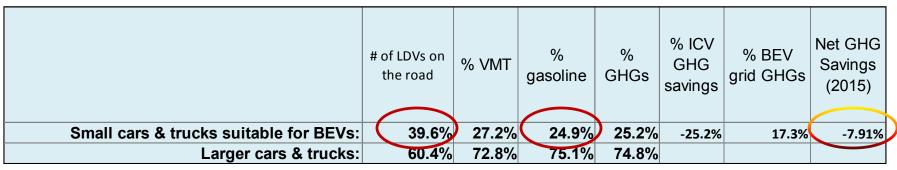
Previous Assumption for GHG reductions:

100% replacement of ICVs with BEVs

New Assumption

• BEVs will replace :

- All small cars,
- All small pickup trucks
- All small SUVs
- All small vans
- And 50% of all midsize seda ^{Sma}

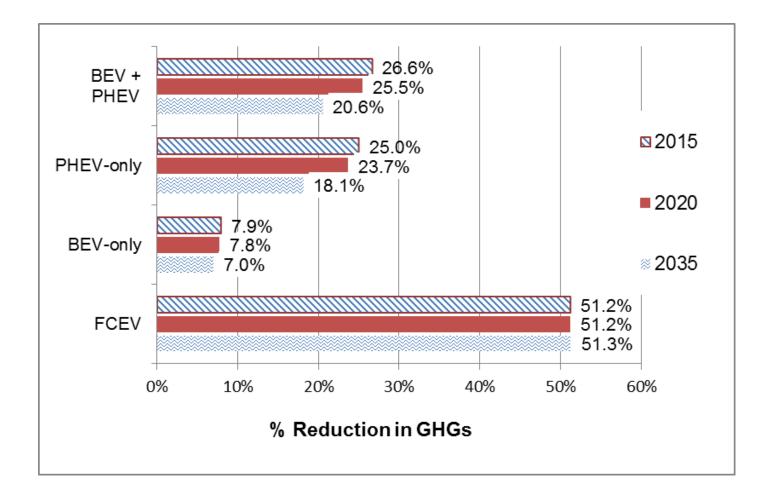

	Table 4. Cur	le 4. Current BEVs available or under development							
				EPA r	ange	Chargin	g Hours		
			Туре	(km)	(miles)	120-V	240-V		
	Nissan	Leaf	5-passenger	117.5	73	21	8		
	Ford	Transit							
		Connect	Small van	128.7	80	27	8		
	Toyota	RAV4	Small SUV	129-193	80-120	28*	12*		
da	Smart	Fortwo	2-seater	113-161	70-100		3.5**		
Ja	Wheego	Life	2-seater	160.9	100		5***		
	Mitsubishi	i-MiEV	4-passenger	99.8	62	14	7		
	Think	City	4-passenger	160.9	100	18	8 to 10		
	*RAV4 charging times for prototype; production unit charging time expected to be shorter								
	**Smart Fortwo charging from 20% to80% SOC; 8 hours for full charge								
	Wheego ch	arging time fo	or 50% to 100% SC	C			21 8 27 8 28* 12* 3.5** 5 14 7 18 8 to 10		

AEO 2011 US Grid Mix Projections through 2035 assuming no carbon constraints

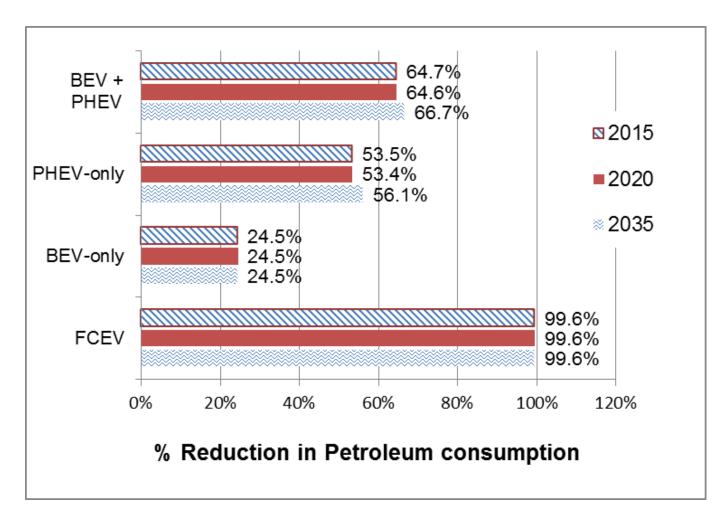
No Carbon constraints	2010	2015	2020	2025	2030	2035
Coal	44.8%	42.3%	43.5%	45.5%	45.5%	45.2%
Oil	1.1%	1.0%	1.0%	1.0%	0.9%	0.9%
Natural gas	24.6%	23.8%	22.3%	20.8%	22.1%	23.4%
All fossil fuels	70.6%	67.1%	66.7%	67.2%	68.5%	69.5%
Nuclear	19.4%	19.8%	19.7%	18.6%	17.5%	16.7%
renewables	10.0%	13.1%	13.6%	14.2%	14.0%	13.8%

work/electric utilities/ AEO-2011 alternative scenarios.XLS, DD 382;10/24/2011

Impact of small BEVs* on US GHGs and Oil Consumption in 2015



2011


EPA f.e. vs. veh class OTR by class (rev B).XLS; Tab 'Sales by class';AN135 - 10 / 24 /

* Includes all two-seaters, all mini-compact, subcompact, all compact, all small sedans, all small wagons, all small vans, all small pickup trucks, all small SUVs & 50% of all midsize sedans.

Maximum GHG Reductions for BEVs, PHEVs through 2035

Maximum Reductions in Oil Consumption for BEVs & PHEVs Through 2035

Thank You

Contact Information:

C.E. (Sandy) Thomas, former-President (ret.)
H2Gen Innovations, Inc.
Alexandria, Virginia 22304
703-507/8149
thomas@cleancaroptions.com
Simulation details at:

<u>http://www.cleancaroptions.com</u>