

Energy Efficiency & Renewable Energy

US Department of Energy Vehicle Battery R&D: *Progress Update*

November 3, 2011

- David Howell (EERE/VTP)
 - Tien Duong
 - Peter Faguy
 - Brian Cunningham

Vehicle Electrification and Benefits

Achieving large national benefits depends on significant market penetration.

- Potential oil savings in 2030:
 ~1.25 Mbpd with 10% market penetration
- Corresponding GHG emissions reduction : ~170 million metric tons of CO₂ equivalent per year

Battery affordability and performance are the keys.

Energy Storage R&D: Involved DOE Offices

- Office of Science/Basic Energy Sciences (BES): Fundamental research to understand, predict, and control matter and energy at electronic, atomic, and molecular levels.
- Advanced Research Projects Agency Energy (ARPA–E): High-risk transformational research with potential for significant commercial impact.
- EERE Vehicle Technologies (VTP): Applied battery R&D to enable a large market penetration of electric vehicles.

Energy Storage R&D: Transportation Battery Funding

This chart does not include ARRA funding for advanced battery manufacturing (\$1.5 B) or demonstrations (\$400 M for transportation and \$185 M for grid-scale).

DOE Integrated Tech Team Over-Arching Battery Goal

1 penny a mile *"Winning the Race for a Better Battery"*

- 1 penny/mile = battery cost / total electric miles driven
 - Addresses consumers' concerns about battery life and cost
- Cost per mile varies based on vehicle architecture/battery size
 - A 150,000 mile PHEV40 battery (~12kWh) will cost 1 penny/mile or \$1,500
 - A 150,000 mile EV100 battery (~24kWh) will cost 2 pennies/mile or \$3,000
 - A 150,000 mile EV300 battery (~60kWh) will cost 5 pennies/mile or \$7,500
 - Note: The cost for each of these batteries is \$125/kWh

This goal assures consumers and the auto industry that DOE is driving research to develop **affordable**, long lived EV batteries for mass market adoption.

DOE Integrated Tech Team Over-Arching Battery Goal

Fast Charge Goal

- 10 miles per minute fast charge
 - Addresses consumers' concerns about vehicle range and charge time
- Total charge time* varies based on vehicle architecture/battery size
 - A PHEV40 battery (~12kWh) completely recharged in 4 minutes
 - A EV100 battery (~24kWh) completely recharged in 10 minutes
 - A EV300 battery (~60kWh) completely recharged in 30 minutes
 *Note: Using a nominal 120-180 kW charger

This goal assures that DOE is driving EV battery research which would alleviate consumers' range anxiety, a major barrier to widespread commercial adoption of electric vehicles.

DOE Integrated Tech Team Over-Arching Battery Goal

- Safe
 - Meet/exceed FMVSS and SAE–J2929 Battery Safety Standard
 - Assure consumer confidence
- Constructed of earth abundant materials
 - Required for low cost
 - Eliminate foreign material resource dependence
- Recyclable
 - Environmental stewardship
 - Assure critical material availability and cost

This goal assures that DOE is driving EV battery research for batteries that are safe, eliminate foreign material resource dependence, and are environmentally sustainable.

Commercial Applications

DOE-funded Technologies Move to Commercial Applications

Several technologies supported by VTP have moved into commercial applications.

- 1990s Nickel Metal Hydride
 - Cobasys NiMH technology: Every HEV sold uses intellectual property developed in the DOE battery program. The US Treasury received royalty fees.
- 1998 High-Power Lithium-ion (HEVs)
 - Johnson Controls Saft (JCS) nickelate technology: BMW, Mercedes and Azure Dynamics/Ford Transit Connect
- 2004 High-Energy Lithium-ion (EVs)
 - A123Systems nano iron phosphate technology: Fisker, BAE, Hymotion, Prius, Navistar
 - CPI/LG Chem manganese technology: GM Volt extended range PHEV, Ford Focus EV

Next Generation Lithium-Ion

Next generation lithium-ion can increase the power and energy by 2X while decreasing cost by 70%

Current R&D Focus and Associated 2011 Technology Readiness Levels

Attributes of Battery Technologies					
	Energy (Wh/kg)	Power (W/kg)	Life (cycles)	Energy Efficiency	Safety
Lithium-ion (current status)	80	500-1000	>3,000	> 90%	Meets SAE J2929
Lithium-ion (future generations)	200+	2,000	>3,000	> 90%	Meet J2929
Lithium metal polymer	150-200	<100	~1000	85%	Concern
Lithium metal / Sulfur	250-400	<300	~100	85%	Concern
Lithium metal / Air	400-800	Poor	~10	<70%	Concern
DOE 2020 Goals	250	2,000	500-3,750	>90%	Meet J2929

VTP Battery R&D Activities and Targets

Key Battery Performance Targets

Targets established through:

- **Electric drive vehicle modeling, simulation, and testing**
- **Battery Performance Modeling and Simulation**
- Battery Hardware-In-the-Loop Testing

Battery PerformanceTargets

USDRIVE Energy Storage		PHEV (2015)		
Targets	HEV	PHEV-10	PHEV-40	EV (2020)
Equivalent Electric Range (miles)	N/A	10	40	200-300
Discharge Pulse Power: 10 sec (kW)	25	45	38	80
Regen Pulse Power: 10 sec (kW)	20	30	25	40
Recharge Rate (kW)	N/A	1.4	2.8	5-10
Cold Crank Power:-30 °C/2sec (kW)	5	7		N/A
Available Energy (kWh)	0.3	3.4	11.6	40
Calendar Life (year)	15	10+		10
Cycle Life (cycles)	300,000 (shallow)	3,000-5,000 (deep)		1,000 (deep)
Maximum System Weight (kg)	40	60	120	300
Maximum System Volume (I)	32	40	80	133
Operating Temperature Range (°C)	-30 to +52	-30 to +52		-40 to +85

Status of Conventional HEV Battery Development

Most HEV performance targets met by Lithium-ion batteries.

- Mature Li-ion chemistries have demonstrated more than 300,000 cycles and 10-year life (through accelerated aging)
- Reduced R&D focus
 - cost reduction
 - improved abuse tolerance
 - Ultracapacitor development

Energy and Power Density of USABC HEV Technologies - 3 Sample Data Sets

Calendar Life -- Two Sample Data Sets

Status of Conventional PHEV Battery Development

Initial PHEV battery development contracts were completed in FY2011
 Focus was to optimize mature HEV technologies for PHEV application
 Significant gains in cost reduction (25-40%), cycle and calendar life
 New contracts to focus on high voltage/high capacity cathodes

	PHEV (10 mile AER)		PHEV(40 mile AER)	
DOE Energy Storage Targets	Target	Status (2011)	Target	Status (2011)
Discharge Pulse Power: 10 sec (kW)	45	~70	38	~95
Regen Pulse Power: 10 sec (kW)	30	~40	25	~70
Available Energy (kWh)	3.4	3.4	11.6	11.6
Calendar Life (year)	10+	8-10	10+	8-10
Cycle Life (deep cycles)	5000	3000-5000	5,000	3000-5000
Maximum System Weight (kg)	60	~57	120	~175
Maximum System Volume (I)	40	~45	80	~100
System Production Price @ 100k units/yr	\$1,700	~2600	\$3400	~6850

Status of Conventional EV Battery Development

- □ Initial EV battery development contracts were started in FY2011
- □ Contracts focus on high voltage/high capacity cathodes & EV cell design optimization
- Initial EV cell deliverables expected this quarter—information in table is based mostly on PHEV cell performance

Energy Storage Goals	AEV (2020)	Current	
Equivalent Electric Range, miles	200-300	\checkmark	
Discharge Pulse Power (10 sec), kW	80-120	\checkmark	
Regenerative Pulse Power (10 sec), kW	40	\checkmark	
Available Energy, kWh	40-60	\checkmark	
Recharge Rate, kW	120	50	
Calendar Life, years	10+	tbd	
Cycle Life, cycles	1000 deep	tbd	
Cycle Life, cycles	cycles		
Operating Temperature Range, C	-40 to 60	0 to 40	
System Weight, kg	160-240	500-750	
System Volume, liters	80-120	200-400	
Production Cost at 100,000 units/year	\$125/kWh	< \$600	

Historic Trends of Commercial Lithium Ion Batteries

H. Takeshita, 2006 International Power Sources Conference

Beijing Li-Ion forum

Battery Cost Reduction

Path Forward for Lithium Based Batteries

If high-risk research is successful, material advances may lead to a 60% reduction in cost and 250% increase in energy density

Calculations for a EV100: 30 kWh, 80 kW, 360V

- Smaller batteries will have higher costs for energy and lower energy densities. Larger energy batteries will have lower costs for energy and higher energy densities.
- Total cost to OEM includes purchased battery, battery management system, and liquid thermal management (w/o electric compressor) as calculated by BatPaC v1.0.
- Cases range from 70-150 μ m maximum allowable electrode thickness and 40 80 Ah cell capacity (1P and 2P configurations).

Source: Argonne National Laboratory

New R&D Thrusts: Manufacturing Technology

Electrode manufacturing, cell & pack assembly & hardware are 60-70% of battery cost. Transformational manufacturing technologies are needed.

Outlook for Battery Cost and EV Production Capacity

On Track to Meet Administration's Goal of 1 Million EVs by 2015

Summary

- Track record of success
 - DOE R&D has brought NiMH and Li-ion batteries into the automotive market
- Clear pathway to meet 2015 goals
 - On track to meet cost and performance targets
- Technologies in the pipeline to go beyond 2015
 - Research program focused on Li metal systems
 - Closely coordinated with ARPA-E and the Office of Science

SEM of Li₂FeSiO₄/C nanospheres

SEM pictures of $LiNi_{0.5}Mn_{1.5}O_4$ made from MnO_2 , $MnCO_3$ and hydroxide precursors