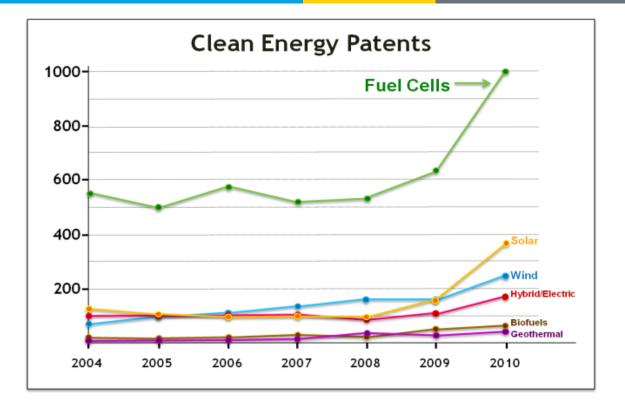
FUEL CELL TECHNOLOGIES PROGRAM

HTAC Meeting

Energy Efficiency & Renewable Energy

Program Update


Sunita Satyapal

U.S. Department of Energy Fuel Cell Technologies Program Program Manager

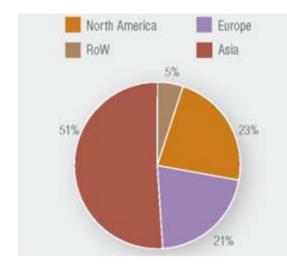
November 3, 2011

U.S. DEPARTMENT OF

3/13:4

Clean Energy Patent Growth Index^[1] shows that fuel cell patents lead in the clean energy field with nearly 1,000 fuel cell patents issued worldwide in 2010.

- 3x more than the second place holder, solar, which has just ~360 patents.
- Number of fuel cell patents grew > 57% in 2010.

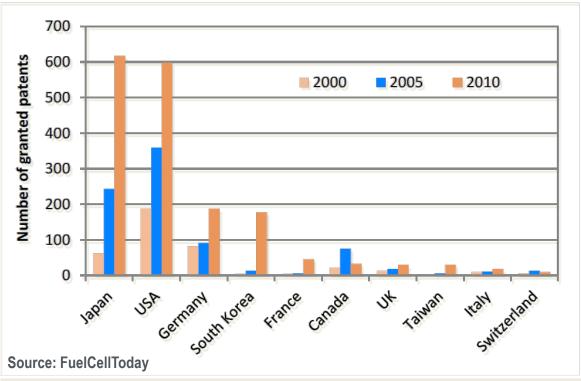

[1] 2010 Year in Review from http://cepgi.typepad.com/heslin_rothenberg_farley_/

Patents and Job Creation

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

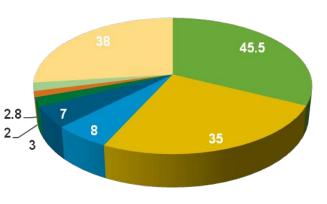
Job Creation by Region of Production 2009-2019


Source: FuelCellToday

Various analyses project revenues (>2020) of:

- \$14 \$31 B/yr for stationary power
- \$11 B/yr for portable power
- \$18 \$97 B/yr for transportation

Significant growth in number of patents filed by Japan, Korea, Germany, U.S. Job creation projections show significant growth in Asia and Europe.


Annual granted fuel cell patents per country of origin (top ten)

DOE Appropriations and Budget Request for Hydrogen and Fuel Cells

EERE Funding (\$ in thousands)						
Key Activity	FY 2010 Appropriation	FY 2011 Appropriation	FY 2012 Request	House Mark	Senate Mark	
Fuel Cell Systems R&D	75,609	43,000	45,450	41,450	42,000	
Hydrogen Fuel R&D	45,750	33,000	35,000	33,000	33,000	
Technology Validation	13,005	9,000	8,000	5,000	8,000	
Market Transformation	15,005	0	0	0	3,000	
Safety, Codes & Standards	8,653	7,000	7,000	7,000	7,000	
Education	2,000	0	0	0	0	1
Systems Analysis	5,408	3,000	3,000	3,000	3,000	
Manufacturing R&D	4,867	3,000	2,000	2,000	2,000	
Total	\$170,297	\$98,000	\$100,450	\$91,450	98,000	

Total DOE Hydrogen and Fuel Cell Technologies FY12 Budget Request (in millions of US \$)

- Fuel Cell Systems R&D
 Technology Validation
 Systems Analysis
- ■Nuclear Energy (NE)*
- Hydrogen Fuel R&D
 Safety, Codes & Standards
 Manufacturing R&D
- Basic Science (SC)**

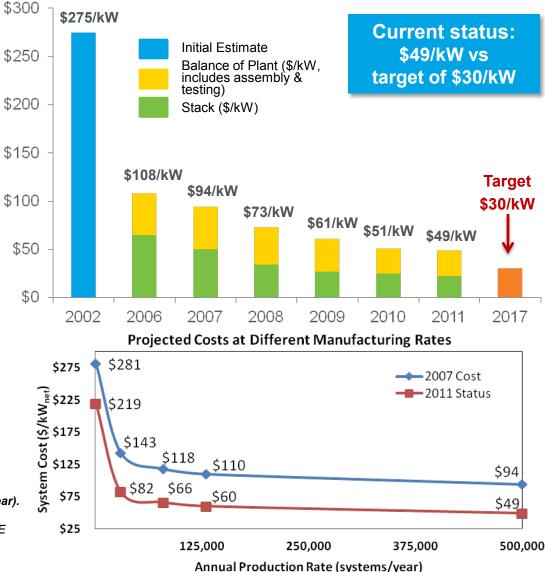
*Based on FY11 appropriations.

Notes: Hydrogen Fuel R&D includes Hydrogen Production, Delivery and Hydrogen Storage R&D. FY11, FY12 include SBIR/STTR funds to be transferred to the Science Appropriation; prior years exclude this funding

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

DOE-funded efforts have reduced the projected highvolume cost of fuel cells to \$49/kW (2011)*


 More than 30% reduction since 2008

More than 80% reduction since 2002

*Based on projection to high-volume manufacturing (500,000 units/year). The projected cost status is based on an analysis of state-of-the-art components that have been developed and demonstrated through the DOE Program at the laboratory scale. Additional efforts would be needed for integration of components into a complete automotive system that meets durability requirements in real-world conditions.

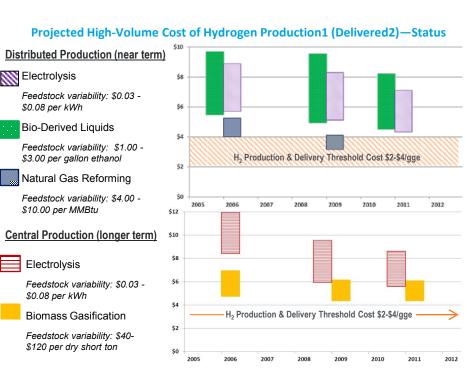
Projected Transportation Fuel Cell System Cost

-projected to high-volume (500,000 units per year)-

DOE Funded Accomplishments

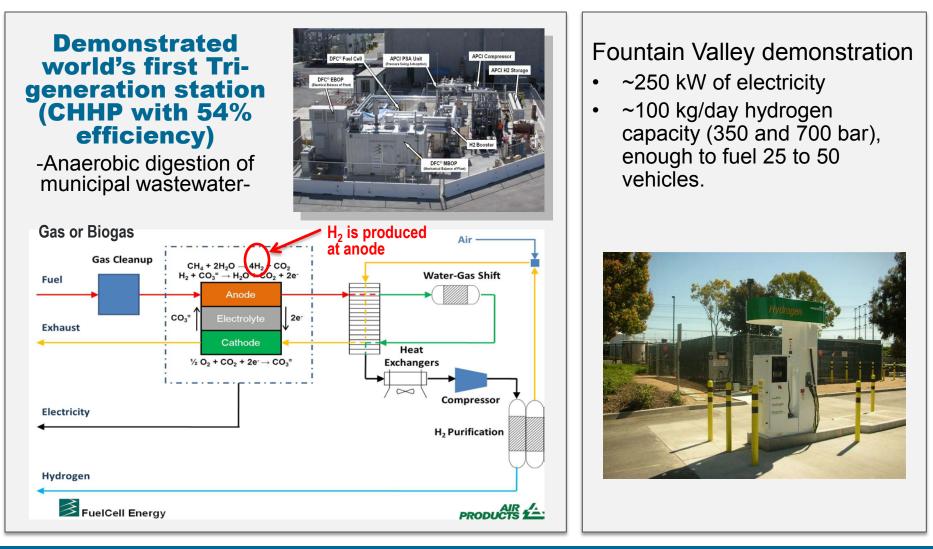
ENERGY Energy Efficiency & Renewable Energy

Reduced cost of H₂ **production** (multiple pathways)


Vehicles & infrastructure

- 170 fuel cell vehicles, 24 hydrogen stations
- > 3.3 million miles traveled
- > 146 thousand total vehicle hours driven
- ~ 2,500 hours (nearly 75K miles) durability
- ~ 5 minute refueling time (4 kg of hydrogen)

 $\rm H_2$ fuel cell buses (w/ DOT) have a 42% to 139% better fuel economy when compared to diesel & CNG buses


- Validated vehicle that can achieve 430 mi
- Developed and evaluated more than 400 material approaches experimentally and millions computationally
- Demonstrated cycle-life of >50,000 refuelings of metal tanks for forklift applications
- Developed safety courses, educated >17,000 first responders and code officials through introductory web-based courses and advanced hands-on training

U.S. DEPARTMENT OF EI

Energy Efficiency & Renewable Energy

"Energy Department Applauds World's First Fuel Cell and Hydrogen Energy Station in Orange County"

Program Updates

Released Program Plan

• An integrated strategic plan for RD&D activities of DOE's Hydrogen and Fuel Cells Program (included input from HTAC and stakeholders)

Held Interagency Task Force meeting across 10 Agencies and Developed Interagency Action Plan

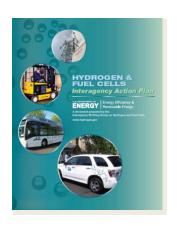
ARRA Projects

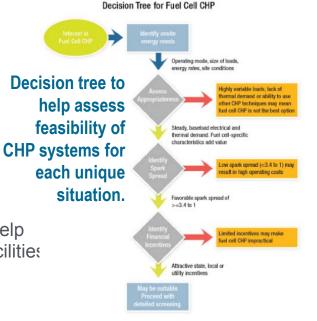
 Deployed ~830 fuel cells (primarily for lift trucks and back up power for cell phone towers)

Developed Procurement Guide for Federal Agencies (ORNL)

• To help identify opportunities for facility managers

Examples of Recent Workshops-


- Manufacturing
- Natural Gas/Hydrogen Infrastructure
- US DRIVE All Tech Team Meeting
- International H2 Safety, Codes and Standards

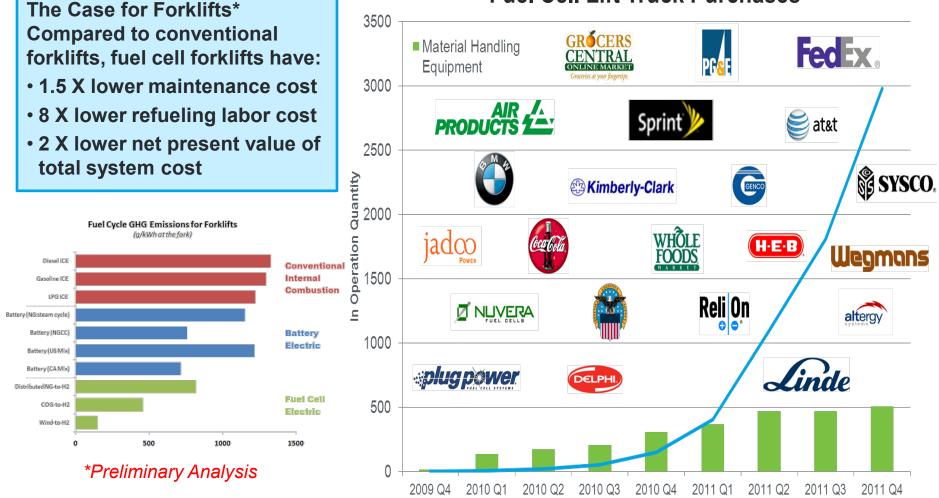

Interagency Deployments

 Funded 18 fuel cell backup power systems at 10 installation sites to help accelerate deployment of clean technology at Federal government facilities and provide valuable data and feedback for fuel cells.

http://www1.eere.energy.gov/hydrogenandfuelcells/

8 | Fuel Cell Technologies Program Source: US DOE 11/8/2011

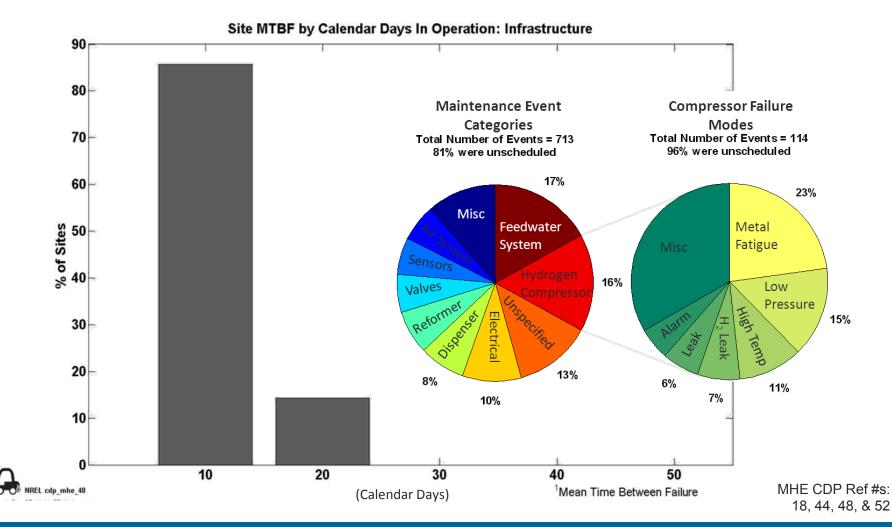
eere.energy.gov



ARRA as Catalyst for Deployments

Energy Efficiency & Renewable Energy

ARRA deployments of fuel cells for lift trucks (~400) led to industry purchases* of an estimated 3,000 additional fuel cell lift trucks with NO DOE funding

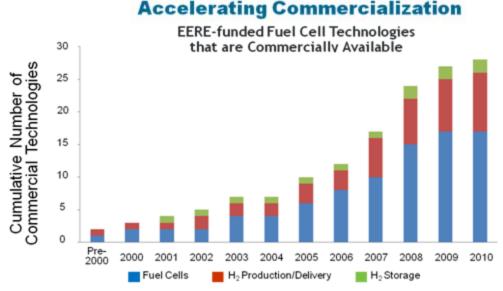

Fuel Cell Lift Truck Purchases

Calendar Quarter

* Including deployed and on order

Infrastructure Reliability (Example)

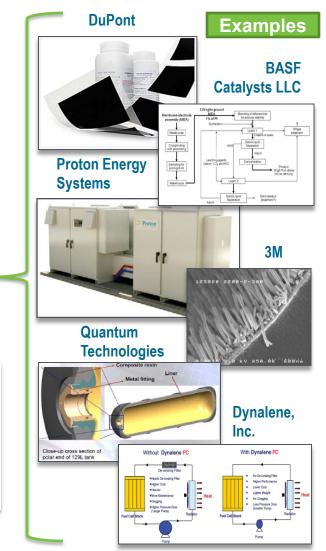
High use (130,742 hydrogen fills) has shown infrastructure maintenance to be an area needing continued development due to a low site MTBF (~10 days for most NHE sites) A primary category for maintenance is compressors. The top four reasons for compressor failure are metal fatigue, low pressure, high temperature, and hydrogen leaks. The site average labor hour per maintenance event ranges from 4 to 11 hours.



Assessing the Impact of DOE Funding -Commercializing Technologies

ENERGY Energy E Renewal

Energy Efficiency & Renewable Energy


DOE funding led to ~30 commercial technologies and >60 emerging technologies The Program is tracking impact: for example, ~\$70M in DOE-funding has led to nearly \$200M in industry investment and revenues.

Source: Pacific Northwest National Laboratory http://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/pathways_success_hfcit.pdf

>300 PATENTS resulting from EERE-funded R&D:

 Includes technologies for hydrogen production and delivery, hydrogen storage, and fuel cells

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011

350

300

250

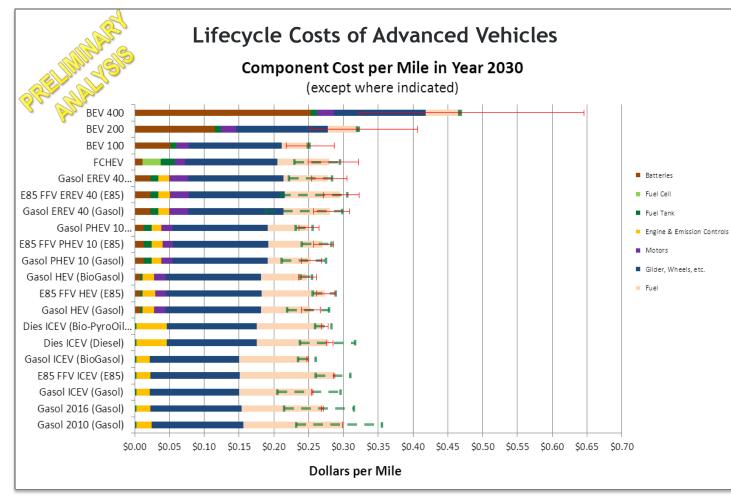
200

150

100

50

Pre


Number of patents

RFI Released: Total Cost of Ownership for Department of ENERGY

Energy Efficiency & Renewable Energy

RFI Closes: December 16, 2011

For Questions, Email: TCORFI@go.doe.gov

Feedback is requested on:

•

- The assumptions (aggressive, moderate or conservative levels of success for various technologies).
- The projection of cost reduction rates for technologies that are not yet fully commercial.
- The general financial analysis approach used.

Error bars include fuel price volatility (green) and different assumptions for technology success (red) (2030 timeframe)

Natural Gas and Hydrogen Infrastructure Opportunities

Workshop convened industry and stakeholders with expertise in natural gas and hydrogen technologies, vehicle OEMs, CHP, policy, and regulations. The focus of the workshop is to facilitate the growth of natural gas and hydrogen use in the U.S. for transportation and other applications.

Workshop Activities Included:

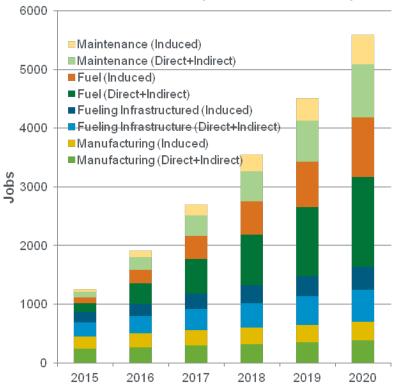
- Discussion led by plenary speakers and expert panels
- Break-out sessions to identify key questions and resolutions on:
 - R&D Needs
 - Regulatory / Environmental Barriers
 - Innovative Approaches

Outcomes:

- Summarize the status of natural gas and hydrogen infrastructure
- Identify opportunities and barriers for expanding the infrastructure
- \succ Identify synergies between natural gas and H₂ use
- Identify and prioritize specific actions to address barriers
- Identify the roles of government and industry in promoting growth of natural gas and H₂ infrastructure

Tuesday, October 18th and Wednesday, October 19th 2011 Argonne Facilities, Chicago, Illinois

Organized by the Argonne National Laboratory for the U.S. Department of Energy


JOBS Fuel Cell Model

Required User Input Fields

Includes selections for state/region, system size, new or existing project, needed and current capacity, etc.

A	В	с	D	E	F	G	н		I	J	-
1			*	* * FORKLIF	T (PEM) MO	DULE *	**				
3	REQUIRED USER INPUT FIELDS										
5				REQUIN	ED USER INFOT FIE	1103					_
	A B	С	D	E	F	G		Н		T	T
1		- C	-							1	J
2			* * * MA	NUFACTU	RING FACI	LITY (.	PEM) N	AODULI	-] * * *		
3						`					
4					REQUIRED USER I	NPUT FIELDS	5				
5											
6											
7	Step 1	Select State or Reg	rion:	<please select=""></please>							
8								_		_	
9	Step 2	Choose system siz	N7	User-specified value	Default value 10	Notes					Value used in model
10		fuel cell size (avera fuel cell size (averag	- · ·		2.5						10 2.5
12		el cell size (kW/uni			5						2.5
13	Dackup power to	er cen size (xw/um	.,								
13	Step 3	Will this he a New	production facility o	r will an existing product	ion facility he Expanded	12					
15			isting PEM prodution								
16						_					
17	Step 4	Needed Capacity	What is the maxim	ium number of PEM unit	ts that the new facility w	ill be able to pro	oduce annually?)			
18		*			D.C.b. J				Values used	l in model calcu	ılations
19		Туре		User-specified value	Default value	Notes			5 kW unit e	quivalent ratio	5 kW unit equivalents
20	Class I/II forklif	't fuel cells (units/ye	ar)								-
21		fuel cells (units/yea	r)								
22	Backup power fu	el cells (units/year)									
23									Total Need	ed Capacity	
24											
25											
26	Step 5	Current Capacity	What is the maxim	ium number of PEM unit	is that can currently be p	roduced annua	lly by the produ	etion facility in th			1.1
27 28		Туре		User-specified value	Default value	Notes				l in model calcu	5 kW unit equivalents
20	Class I/II forklif	t fuel cells (units/ye	ar)						5 KW unit e	quivalent ratio	o kw unit equivalents
30		fuel cells (units/yea	,								
31		el cells (units/year)									
32		(, y)							Total Curre	ent Capacity	
-											

Illustrative Example of JOBS FC Output

Jobs tools to be available for BETA testing December 2011. www.hydrogen.energy.gov

Communication & Outreach

Energy Efficiency & Renewable Energy

Published more than 70 news articles in FY11 (including blogs, progress alerts and DOE FCT news alerts) Communication and Outreach Activities include:

- Webinar Series:
 - Series of informational webinars led by FCT and partners on various topics including: Hydrogen Fuel Cells in your Area, Local Green Policies, Mobile Lighting
- MotorWeek: PBS to air fuel cell episode in Fall 2011
- H₂ Student Design Contest: Registration closes November 15, 2011
- Portland Community College: Installed 1st of 38, 5KW units.
- New Awards: Nearly \$7 Million Fuel Cell and Hydrogen Storage Cost Analysis
- Jobs tool developed, ANL (Beta testing, this year)

Blogs Published to Energy.gov website include:

- Fuel Station of the Future
- Shuttle Launch

Progress in low and zero Pt catalysts highlighted in Science

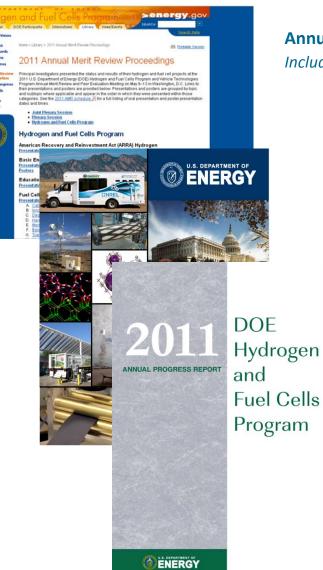
Hydrogen fuel cells providing critical backup power

"These technologies are part of a broad portfolio that will create new American jobs, reduce carbon pollution, and increase our competitiveness in today's global clean energy economy."

Hydrogen power lights at the space shuttle launch

Additional Information

EERE Budget: FY10 - FY12



Funding (\$ in thousands)						
Activity	FY 2010	FY 2011	FY 2012 Request			
Biomass and Biorefinery Systems	216,225	182,695	340,500			
Building Technologies	219,046	210,500	470,700			
Federal Energy Management Program	32,000	30,402	33,072			
Geothermal Technology	43,120	38,003	101,535			
Hydrogen and Fuel Cell Technologies	170,297	98,000	100,450			
Water Power	48,669	30,000	38,500			
Industrial Technologies	94,270	108,241	319,784			
Solar Energy	243,396	263,500	457,000			
Vehicle Technologies	304,223	300,000	588,003			
Weatherization & Intergovernmental Activities	270,000	231,300	393,798			
Wind Energy	79,011	80,000	126,589			
Facilities & Infrastructure	19,000	51,000	26,407			
Program Support	45,000	32,000	53,204			
Program Direction	140,000	170,000	176,605			
Congressionally Directed Activities	292,135	0	0			
RE-ENERGYSE	0	0	0			
Adjustments	0	-30,000	-26,364			
Total	\$2,216,392	\$1,795,641	\$3,200,053			

** Includes \$250.0 million in emergency funding for the Weatherization Assistance Grants program provided by P.L. 111-6, "The Continuing Appropriations Resolution, 2009."

Key Program Documents

Annual Merit Review & Peer Evaluation Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

Latest edition released July 2011

http://www.hydrogen.energy.gov/annual_review11_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

Released September 2011

http://hydrogen.energy.gov/annual_review11_report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

• To be released November 2011

www.hydrogen.energy.gov/annual_progress.html

Next Annual Review: May 14 – 18, 2012

Arlington, VA

http://annualmeritreview.energy.gov/