Research and Development in the Safety, Codes and Standards Program Element

Daniel Dedrick Sandia National Laboratories

Antonio Ruiz DOE Fuel Cell Technologies Program

October 15th, 2010

Multi-faceted approach to establishing technical basis for Codes and Standards

Indentify R&D needs

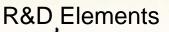
Facilitate stakeholder workshops, develop R&D roadmaps
Analyze existing codes and standards, safety knowledge
Participate actively in technical working groups

Perform High-Priority R&D

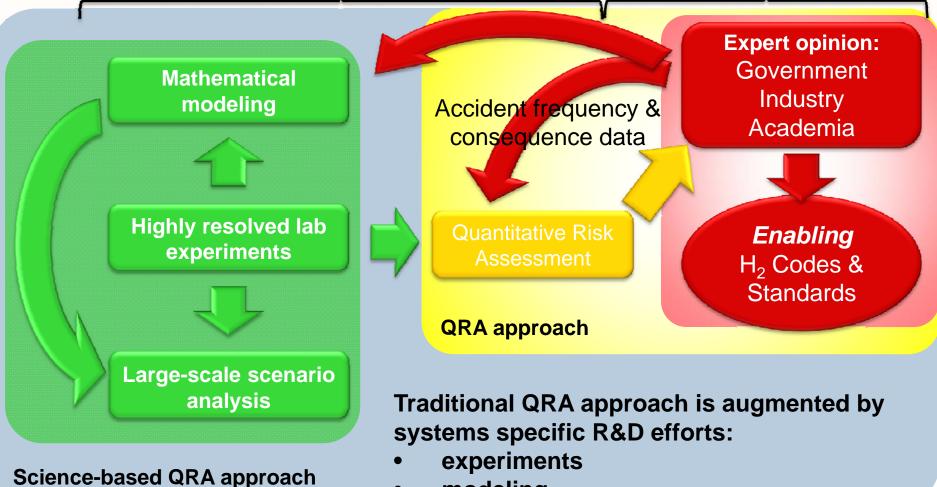
- Hydrogen behavior
- Risk Analysis
- Compatible materials and components

Labs, - academia, industry

Impact Codes and Standards


Participate in technical committees to develop requirements
Publish R&D results

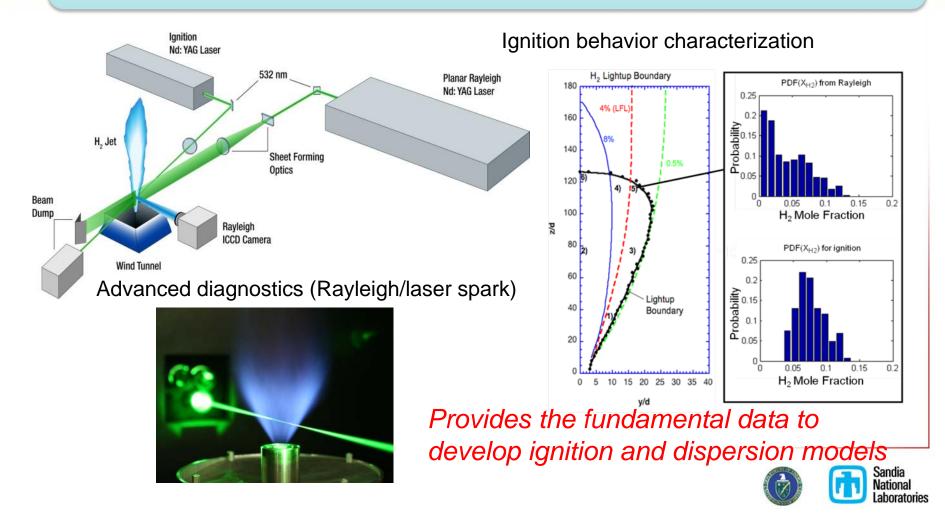
Harmonize Internationally


- Regulations, Codes and Standards (RCS)
- International Standards (eg. ISO)
- International Agreements (IEA)

A science-based, risk analysis approach has been adopted for hydrogen C&S development

Code Development

• modeling



Each R&D program element is constructed to impact technology deployment

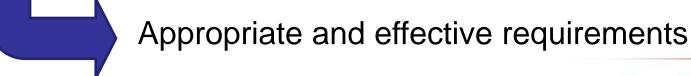
20 ms	R&D Element	Input	Output		ASME THE STANDARD
	Hydrogen Behavior	Hydrogen utilization and technology information • Pressurized gas • LH ₂	Safety data and validated models • ignition • dispersion • transport	Sound C Enabli marke penetra of H ₂	Technically sound C&S
	Risk Analysis	Utilization information and requirements (indoor refueling, 700 bar storage)	 Safety requirements (eg. sep. distances) Mitigation technology evaluations 		Enabling market penetration of H ₂ technologies
	H ₂ Compatible Materials and Components	 Materials and systems performance requirements Qualification requirements (efficiency, cost) 	 Optimized and validated test methods Hydrogen specific materials data Published data 		NFFRA (U) NFFRA (U) Sandia National

R&D in *Hydrogen Behavior* provides foundation for Risk Analysis

R&D Goal: Provide understanding of hydrogen dispersion and ignition at relevant temperature and pressure – develop validated models

Separation Distances Define the Spatial Requirements

• Specified distances between a hazard and a target

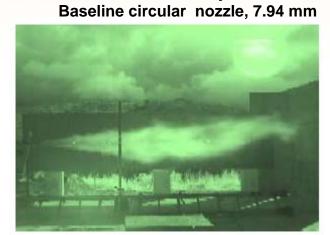

human, equipment, ignition sources, etc

- Established distances did not reflect high pressures (70 MPa)
- Basis for established distances are undocumented
- Several options to establish new separation distances
 - Subjective determination (expert judgment)
 - Deterministically, based on leak scenario

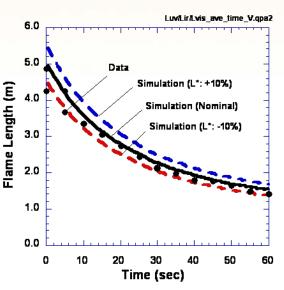
H₂ System ◄

 Based only on risk evaluation as suggested by the European Industrial Gas Association (IGC Doc 75/07/E)

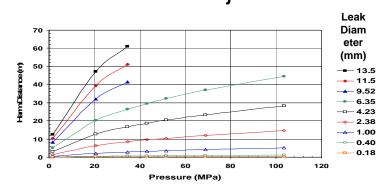
Risk-informed process combines risk information, deterministic analyses, and expert judgment



Validated models exercised to understand separation distances


Models validated at scale:

- Flame length
- Radiative fraction

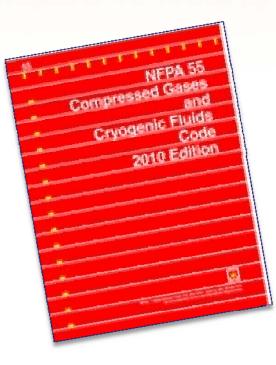


SRI Test Facility

Horizontal Flame 3.6 - 4.3 m long, 0.6 - 1m wide

Use models to generate harm distances for a jet fire: 1.6 kW/m² heat flux

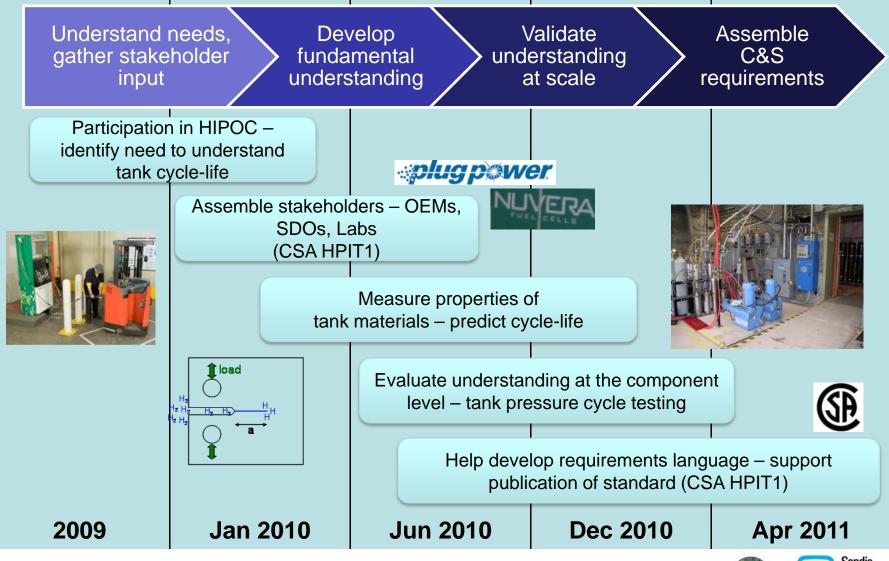
Consensus driven risk criteria


Validated separation distance look-up table:

	Separation Distance					
Consequence Bases	>0.10 to 1.72 MPa (>15 to 250 psig)	>1.7210 20.68 MPa (>25010 3000 psig)	>20.68 to 51.71 MPa (>3000 to 7500 psig)	>51.71 to 103.43 MPa (>7500 to 15000 psig)		
Us-ignite-fjøt concentration – 4% mole traction of hydrogen	34.2m (20% Anna) 22.1m (10% Anna) 15.7m (5% Anna) 12.1m (5% Anna) 2.0m (7% Anna)	56.5m/20%Area) 25.5m/20%Area) 16.5m/25%Area) 14.5m/25%Area) 8.5m/25%Area)	22.5 m (20% Anna) 16.3 m (10% Anna) 11.3 m (2% Anna) 8.3m (2% Anna) 5.0 m (2% Anna)	26.8m (20% Аная) 19.0m (10% Аная) 15.6m (1% Аная) 10.6m (2% Аная) 6.0m (1% Аная)		
Radiation have flam layed of 1977 Week (SOC Blacks #)	20.4 m (20% Anna) 15.3 m (12% Anna) 10.7 m (5% Anna) 7.3 m (7% Anna) 4.3 m (7% Anna)	28.5 m (20% Anna) 19.2 m (10% Anna) 12.5 m (5% Anna) 8.5 m (7% Anna) 4.8 m (7% Anna)	16.8 m (20% Anna) 11.2 m (10% Anna) 7.8 m (2% Anna) 8.5 m (2% Anna) 2.6 m (2% Anna)	20.5m (20% Ame) 13.8m (10% Ame) 8.6m (7% Ame) 6.8m (7% Ame) 3.5m (7% Ame)		
Radation baat No (work of 4.7 Willing (1500 Bladw H)	17.8 m (20% Anaz) 11.8 m (10% Anaz) 7.9 m (5% Anaz) 6.9 m (5% Anaz) 3.1 m (7% Anaz)	29.3m(20%Area) 13.3m(31%Area) 8.4m(7%Area) 7.0m(7%Area) 3.7m(3%Area)	12.2 m (20% Anna) 8.2 m (10% Anna) 1.5 m (1% Anna) 4.1 m (2% Anna) 2.1 m (1% Anna)	54.0m (20% Anni) 50.0m (10% Anni) 6.7m (7% Anni) 5.1m (7% Anni) 2.0m (7% Anni)		
Greater of radiation heat flac broat of 25257 Whee' (8000 Blacks #') or stable flacter bright Similar writy for 22ki/kite' or stable flame bright	13.8 m (20% Anna) 9.2 m (10% Anna) 0.5 m (5% Anna) 5.0 m (5% Anna) 2.8 m (7% Anna)	15.0 m (20% Anna) 10.0 m (10% Anna) 7.5 m (5% Anna) 5.0 m (7% Anna) 3.4 m (7% Anna)	6.4m (20% Anas) 6.7m (50% Anas) 4.7m (5% Anas) 3.6m (7% Anas) 2.1m (7% Anas)	11.5 m (20% Anna) 7.9 m (20% Anna) 5.6 m (7% Anna) 4.3 m (7% Anna) 2.6 m (7% Anna)		

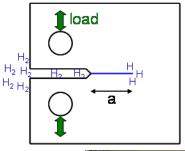
Risk-Informed Approach is a Critical Tool for Model Codes

- NFPA 55 voted to accept the new hydrogen bulk storage separation distances table
 - New table approved for NFPA 55 and 52 (available in 2010 editions)
 - New table to be included in NFPA 2
 - HIPOC supported inclusion in IFC by referencing back to the new table in NFPA 55 (available in 2010 edition of IFC).
- We have helped implement a similar approach into ISO TC197 WG11



This provides a model for further C&S development:

- R&D informs the code development process
- Apply to requirements for liquid hydrogen, indoor refueling


FCT S,C&S program in action: development of requirements for forklift tanks

Hydrogen Compatible Materials R&D provides understanding under relevant service conditions

R&D Goal: Provide fundamental understanding of H2 effects in materials and develop appropriate test methods on protocols

Cyclic loading

 Challenge: optimize frequency to balance data reliability and test duration

• H₂ gas pressure

- Relevant pressures up to100 MPa
- Temperature
 - Relevant temperatures from -50 °C to 100 °C
- Test methods
 - Fatigue crack growth
 - Fatigue crack initiation

Materials Tech Reference:

- 22 material-specific chapters
- Content shaped by input from stakeholders

www.ca.sandia.gov/matlsTechRef

R&D in H2 Compatible Materials impacts code development and technology deployment

• Forklift tanks

- CSA Hydrogen Powered Industrial Trucks (HPIT)
- H₂ gas cycle testing of tanks providing guidance on fatigue life

- Stationary pressure vessels
 - ASME Article KD-10
 - Fatigue data in H₂ used to qualify new steel-lined Type 2 vessel design

FCV fuel system components

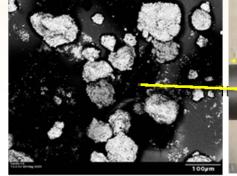
- SAE J2579
- Tensile fracture data for H₂-exposed stainless steels defined effects of alloy composition and temperature

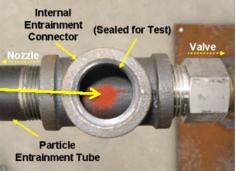
Future efforts will continue to address R&D gaps for C&S development

R&D Element	Research areas (partial list)	
Hydrogen Behavior	 Low-temperature dispersion and ignition behavior (Cryo and LH₂) Materials-based storage Global ignition models]
Risk Analysis	 Mitigation technologies, sensors (NFPA 2) Telecom APU sheds, separation distances (NFPA2) LH₂ storage separation distances (NFPA 2) Advanced storage technologies (SAE J2578, CSA, UL) 	Scope defined in partnership with industry, SDOs, and
H ₂ Compatible Materials and Components	 Accelerated materials and systems qualification (ASME, CSA, UL, SAE) Welded components Aluminum alloys Low-alloy steels Hydrogen effects at low temperature Composite materials 	academia

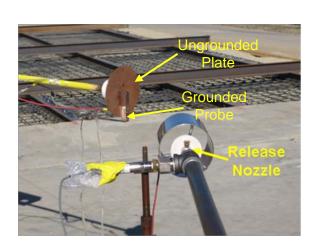
Publications are numerous and provide a valuable product

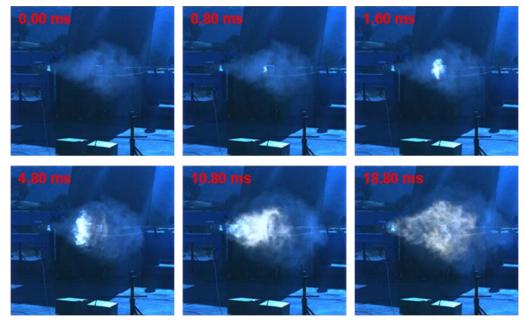
- 34 total journal articles, reports, and presentations in 2009 (SNL and partners only)
 - 12 peer-reviewed journal articles
 - 12 reports and articles
 - 20 presentations (6 invited) at conferences and professional meetings
- Materials Technical Reference
 - www.ca.sandia.gov/matlsTechRef
- R&D workshop proceedings
 - April 28th, 2010 Early Market C&S Workshop
 - H2 Compatible Materials Workshop (November 3rd, 2010)
 - Qualification workshop (November 4th, 2010)


Additional Slides

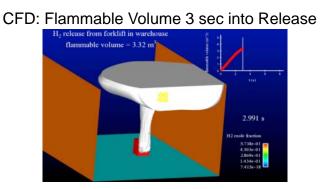


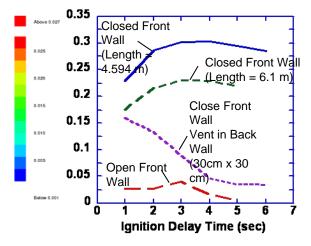
We validate understanding at relevant scales

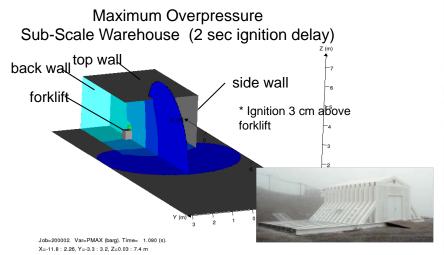

- "Spontaneous ignition" mechanisms investigated
- Repeatable ignition from spark discharges between isolated conductors were observed


Sample B Iron (III) Oxide Fe₂O₃

200 x


Provides understanding for ignition models


Consequence analysis provides context for assessment of indoor refueling


R&D Goal: Provide understanding of consequence of hydrogen safety events – develop validated models

We are evaluating requirements in NFPA 52 with OEM input to define indoor release scenarios

Deflagration Overpressure*

Experimental validation in sub-scale warehouse

Provides basis for hazard mitigation and safety requirements (NFPA 2)

