U.S. Department of Energy Fuel Cell Technologies Office

Hydrogen and Fuel Cell Technical Advisory Committee

Washington, D.C

October 27, 2015

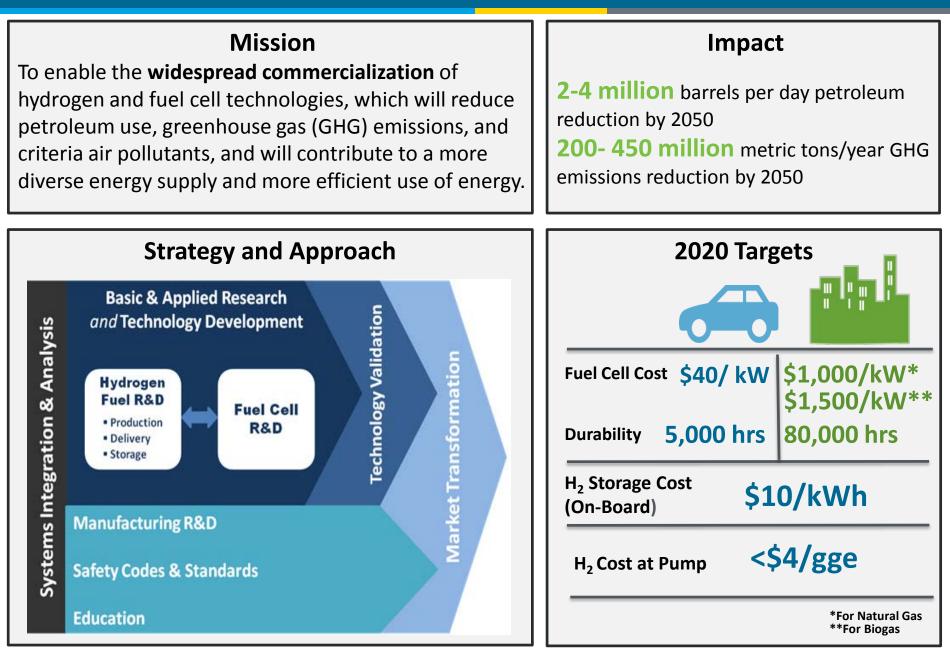
Dr. Sunita Satyapal

Director Fuel Cell Technologies Office U.S. Department of Energy

- HTAC Scope
 - Energy Policy Act (EPACT) 2005 Title VIII
 - Key Recommendations and Program Responses
- Program Updates
 - Key Accomplishments
 - Recent Priorities (Lab Impact Initiative, Lab Consortia, etc.)
 - Collaborative Efforts
- Next Steps

Energy Policy Act of 2005 (Title VIII)

Program goals, include:


"To enable a commitment by automakers *no later than year 2015* to offer safe, affordable, and technically viable hydrogen fuel cell vehicles in the mass consumer market"

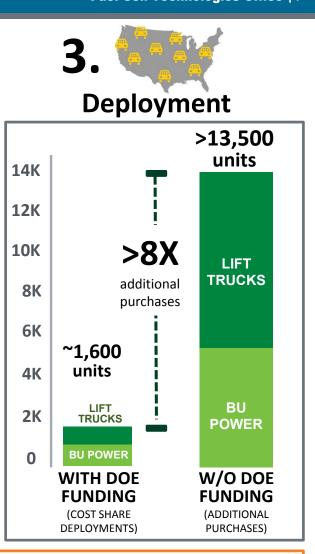
To advise the Secretary of Energy on:

- 1. The implementation of programs and activities under Title VIII of EPACT
- 2. The safety, economical, and environmental consequences of technologies to produce, distribute, deliver, store or use hydrogen energy and fuel cells
- 3. The DOE Hydrogen & Fuel Cells Program Plan

- Enable and promote comprehensive development, demonstration, and commercialization of H₂ and fuel cells with industry
- 2. Make **critical public investments** in building strong links to private industry, universities and National Labs to expand innovation and industrial growth
- 3. Build a mature H_2 economy for **fuel diversity** in the U.S.
- 4. Decrease the **dependency foreign oil & emissions** and enhance energy security
- 5. Create, strengthen, and protect a **sustainable national energy economy**.

DOE Activities Span from R&D to Deployment

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy
Fuel Cell Technologies Office | 7


Research & Development

Cost Reductions

- 50% for fuel cell systems
- 5x less platinum
- > 2x increase in durability
- 80% for electrolyzers

\$124/kW in 2006 \$55/kW in 2014* at high volume *\$280/kW low volume

last

vear

More than

&

last

5 vrs

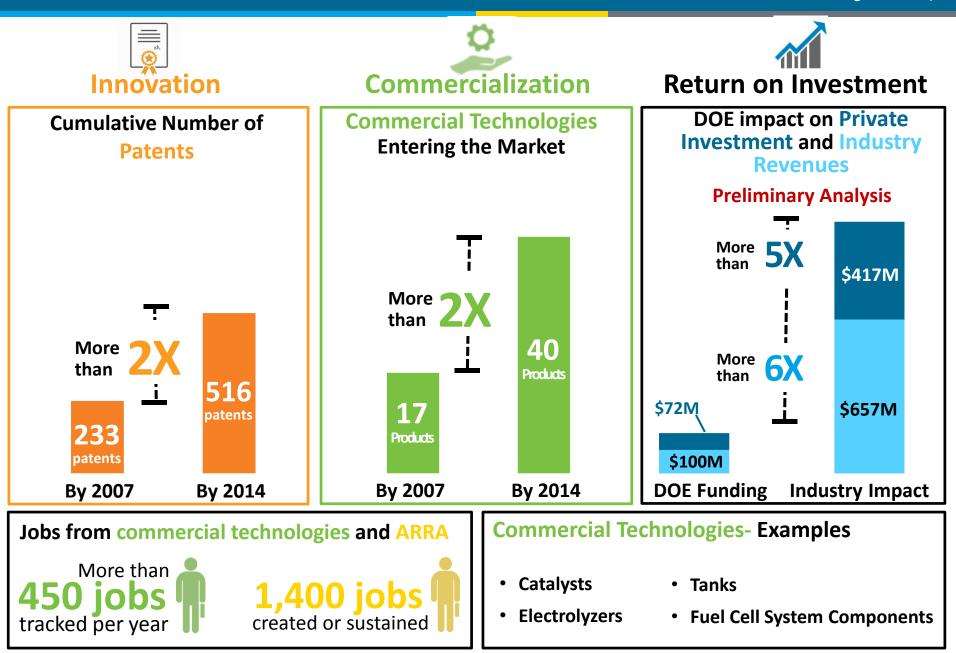
Early Market Strategy

Early Markets enable:

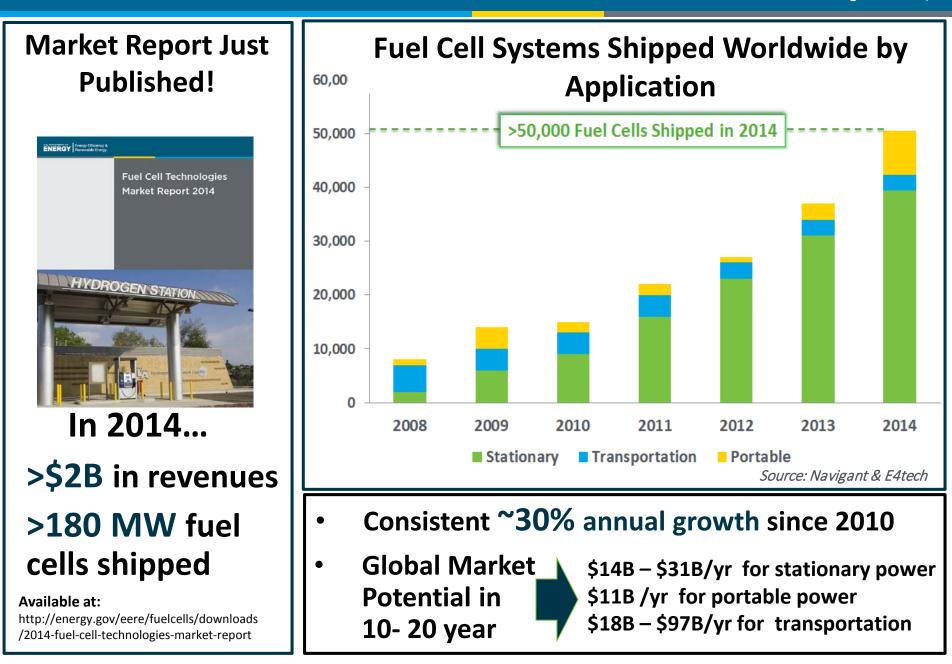
- Fuel cell cost reduction
- Robust supply base
- Emerging Infrastructure
- Customer acceptance

FCEV Cost Reduction Enablers

Space Applications Specialty Vehicles Backup Power Systems Primary Power Portable Power APUs for Transportation Buses and Fleets Wide-Commercialized


Market Penetration

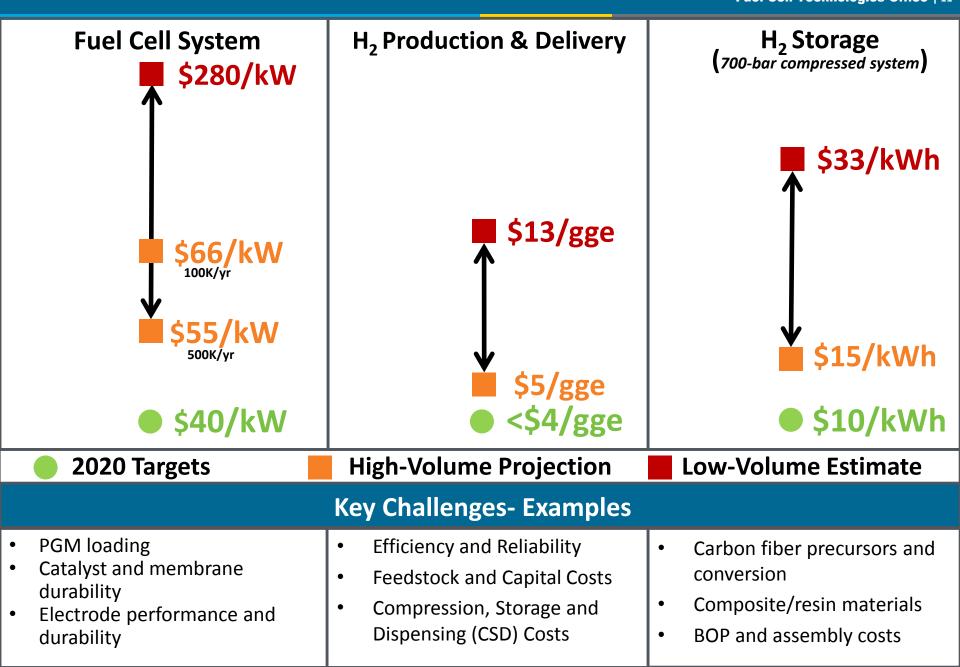
World's First Fuel Cell Cargo Trucks at Memphis International Airport



facebook	Post Stats:
More 180 sh than 240 lik	tes Over 45,000 people reached

DOE Impact- H₂ and Fuel Cells

Fuel Cells- Steady Market Growth

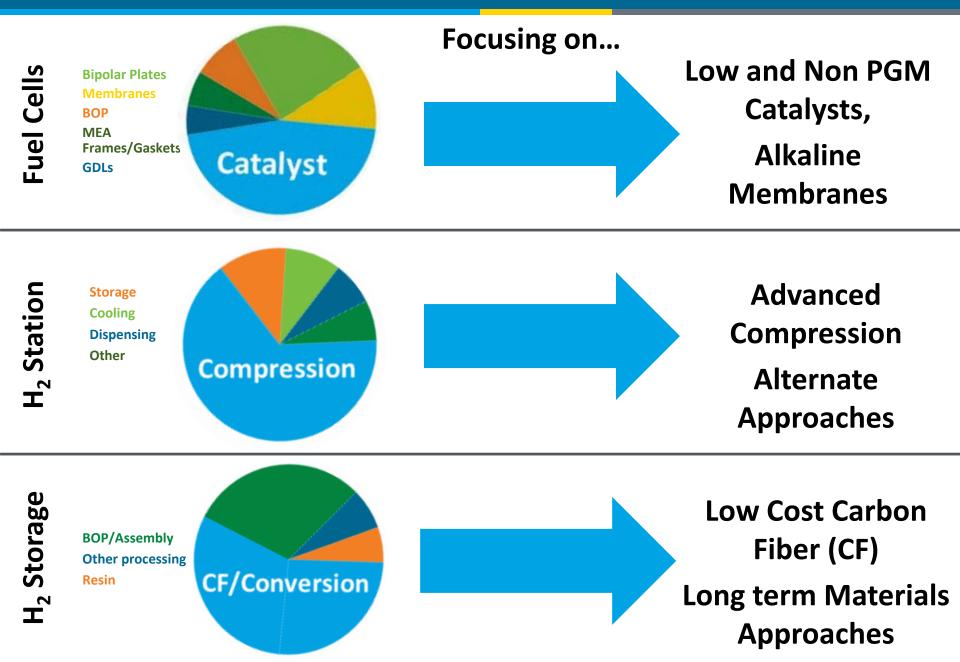


DOE Cost Targets and Status

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

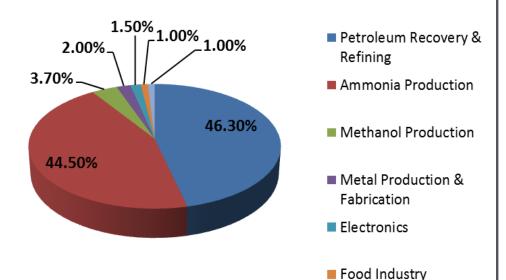
 Fuel Cell Technologies Office | 11



Techno-Economic Analysis Guides R&D Portfolio

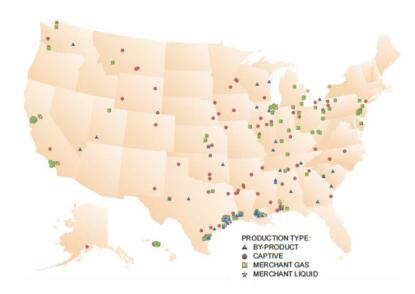
 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy


 Fuel Cell Technologies Office | 12

U.S. H₂ Production: Current Status

~10 million metric tons of H₂ mostly:


- From steam methane reforming of natural gas (SMR)
- For **petroleum refining**, ammonia production

H₂ consumption market share by application

Strategy for cost-competitive hydrogen fuel

- Near term from Natural Gas Longer term- renewables
- ~50 stations (~10 public- CA)

Centralized H₂ production facilities

Early adoption of H₂ and fuel cell technologies can leverage production and delivery infrastructure associated with low cost NG reforming

Examples of Global Infrastructure Activities

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 14

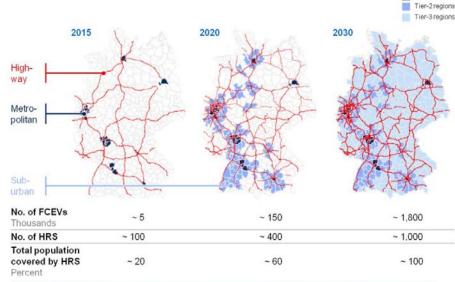
Tier-1 regions

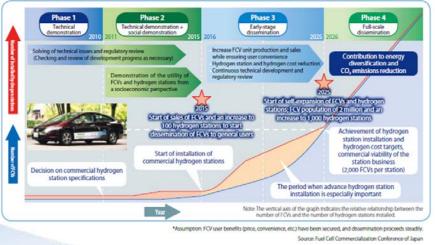
Hydrogen Supply/Utilization Technology (HySUT)

- 18 companies (including 3 auto companies), have announced plans to commercialize FCEVs and provide infrastructure by 2015.
- 100 H₂ stations and FCEVs launched in 4 urban areas by 2015

H2Mobility

- Public-private initiative for nationwide H₂ infrastructure—will develop into joint venture to install stations.
- 50 H₂ stations (public-private funds committed); and
 5,000 FCEVs expected on the road by 2015


UKH2Mobility


- Evaluating anticipated FCEV rollout in 2014-2015
- Will develop action plan to make UK a leading market for FCEVs

Scandinavian H2 Highway Partnership (SHHP)

- Partnership of Hydrogen Link (Denmark), HyNor (Norway) and Hydrogen Sweden.
- 45 H₂ stations and a fleet of ~1K vehicles. Projects include H2Moves Scandinavia and Next Move
- 2012 MOU signed between auto & infrastructure companies and NGOs to introduce FCEVs and H₂ infrastructure within 2014 and 2015 timeframe.

International partnerships established to accelerate hydrogen infrastructure

Material SRNL SCRA Stational Laboratory FCA

~ 45 Partners in 2015

Hydrogen

PROTON

HONDA

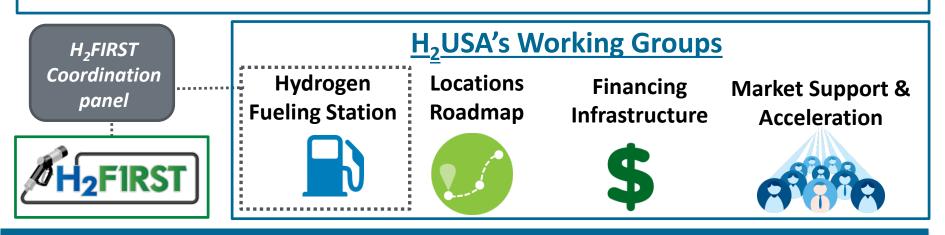
• ITM POWER KOBELCO

CINREL NUVERA Pacific Northwest

ENERGY

AIR LIQUIDE

H2USA Partners CIODAIAutomakers O NESCAUM OF Med Cell A Marconton Contactor of Cont


NACS

Mission

To address hurdles to establishing hydrogen fueling infrastructure, enabling the large scale adoption of fuel cell electric vehicles

Structure

4 Working Groups coordinated by the Operations Steering Committee

More than 45 partners working towards adoption of FCEVs and H₂

Key HTAC Recommendations and Responses

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 16

Recommendations

Key Responses

Increased visibility including support of tax incentive renewal proposal

Factsheet on proposed tax incentive proposal for advance vehicle technologies; 1st ever H₂ and Fuel Cell day; ~100 news articles/blogs and >11,800 readers; FCEV ride & drives; increased outreach

Best practices/lessons learned from CA on infrastructure and international coordination as well as across states

H₂ Refueling Summit; Reference Station Design; H2USA activities; CA update on stations; joint int'l workshops; int'l collaboration through IPHE and IEA

Support for fuel cells for grid resiliency and storage

Participation in DOE-wide crosscut effort on Grid Modernization; contribution of topics to grid modernization lab call; NREL/INL joint project related to real-time grid simulation of electrolyzers

Budgetary support and higher level of funding commensurate with global leadership

FY16 request (\$103M) 10% higher than 2015 request (\$93M); >\$20M just announced to support RDD&D efforts; HyMARC, FC-PAD lab consortia; T2M activities; SOFC activities (~\$30M)

1. Increased Visibility

First Ever National Hydrogen and Fuel Cell Day

- Public outreach to thousands; Hill events (trade association)
- > \$20M in new DOE projects announced
- DOE blogs and Facebook posts; news nation-wide
- National Lab & Industry activities

Increased Support at DOE Leadership Level & Public Outreach!

Assistant Secretary Danielson meets with Hyundai President and drives FCEV

Secretary Moniz drives Toyota Mirai

- >100 publications and 15 webinars in 2015
- Newsletter with >11,800 readers
- Educated 35,000 code officials/first responders & 12,000 teachers
- ~10M people reached at Shell Ecomarathon
- EERE's Factsheets online!

2a. Lessons Learned from CA on Infrastructure

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 18

Updates on H₂ Stations to Stakeholders

On Current Status:	Open - Retail Open - Non-Retail	2	On Future (Projected) Status	:		
 53 H₂ stations 8 open 15 under construction Available on CaFCP's website stakeholders regularly Other mechanisms: Joint website 	Commissioning Under Construction Approval to Build Planning Approval Permit in Process Pre-Permit Application Site Acquisition te and sent to ZEV	6 15 4 6 4 7	report projected hydrogen demand and additional hydrogen fueling stations	<image/> <image/> <image/> <image/> <text><text><text></text></text></text>		
Hydrogen Refueling Summit			Reference Station Design Report Published			
 Perspective on H₂ infrastructure challenges unique to retailers Request for feedback on H₂FAST and H₂ Infrastructure Guide 			Analyzed 120 station per Four high-priority, near- concepts selected based technical feasibility, and	term station I on economics,		
 Next Steps: Business of developed by industry with National Labs and 	and in collaborati	ion •	Shows ~\$6-13/gge for H stations (~100-300 kg/da Available at: http://www.nrel.gov/docs/fy15osti/64	ay)		

2b. International and State Coordination

Energy Efficiency & U.S. DEPARTMENT OF Renewable Energy Fuel Cell Technologies Office | 19

Joint Workshops with International Stakeholders

More activities through H₂USA

3rd International Infrastructure Workshop in Tokyo, Japan

6th Int'l Conference on Hydrogen Safety in Kawasaki/Yokohama, Japan

I²CNER Los Alamos Sandia National Laboratories

Japan-US Collaboration on Technical Areas:

- Hydrogen Storage Vessels
- Hydrogen Materials Compatibility

Fuel Quality

State Collaboration and Activities

- 8 State MOU- 3.3M ZEVs by 2025
- 9 states (4 ZEV states) offer incentives for FCEVs and H₂ station deployment
- **Integrated Network of Regional Technical Centers for Manufacturing**

H₂USA

Tools recently developed through DOE

Hydrogen Refueling Stations

IPHE and other International

Collaboration

Analysis Model (HRSAM)

17 partners + EU

Hydrogen Financial Analysis Tool

- Dec 1st- Next Meeting at **Grenoble**, France
- 2015 Technology **Roadmap Released**

supporting H₂USA

(H2FAST)

Includes H₂ and fuel cells input from international stakeholders

3. Grid Resiliency

Focusing on areas related to grid resiliency and energy storage

Dynamic Modeling and Validation of Electrolyzers in Real-time Grid Simulation

- Real time digital simulator (RTDS) to RTDS communications network established between NREL and INL
- □ Hardware-in-the-loop simulations with electrolyzer hardware at NREL and grid simulation at INL
- Also will identify high-value locations to implement demand response and ancillary services using hydrogen stations

GRID MODERNIZATION

- Provide feedback and content to Grid Multi-Year Plan
- Contribute to Grid lab call:
 - Topic 1a: Building Manager Dispatch Tool for Integrated Fuel Cell/ Building/ Energy Storage
 - Topic 1b: Optimal Planning of Integrated Fuel Cell/ Building/ Energy Storage
 - Topic 2: Capacity for Hydrogen Infrastructure and Fuel Cell Vehicles to Support the Grid

Consistent budgetary support

- \$5.8M allocated in FY15
- \$5.1M allocated in FY16

FY16 PLANS

- Hi-temp & Low-temp Electrolyzer R&D for Energy Storage and Grid Services
- Grid Modernization Lab Call
- Hydrogen Energy Storage Working Group

Quadrennial Technology Review (QTR)

Available at: http://energy.gov/qtr

- Ch. 3 hydrogen energy storage systems
- Ch. 7 H₂ infrastructure for FCEVs
- Ch. 4 stationary fuel cells for distributed generation, grid integration, etc.

4. Buc	lgetary	y Support
--------	---------	-----------

\$20M Funding Awards Announced!			
 More than \$20M for 10 new projects 7 R&D projects covering hydrogen, low PGM catalysts, dispensers and pipeline manufacturing. 3 Demonstration and Deployment projects including mobile refuelers and range extenders. 			
Increased Tech-To-Market Activities			
 Sessions to engage National Labs Poster sessions to highlight National Labs' unique capabilities Collaboration Corner (CC) for networking between industry, labs and DOE 			

Hydrogen & Fuel Cells Budget

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 22

	FY 15	FY 16					
Key Activity	(\$ in thousands						
	Request Approp.		Request				
Fuel Cell R&D	33,000	33,000	36,000				
Hydrogen Fuel R&D ¹	36,283	35,200	41,200				
Manufacturing R&D	3,000	3,000	4,000				
Systems Analysis	3,000	3,000	3,000				
Technology Validation	6,000	11,000	7,000				
Safety, Codes and Standards	7,000	7,000	7,000				
Market Transformation	3,000	3,000	3,000				
NREL Site-wide Facilities Support	1,700	1,800	1,800				
Total	\$92,283	\$97,000	103,000				

Office	FY 2015
EERE	\$97M
Basic Science ²	~\$20M
Fossil Energy, SOFC	\$30M

Total FY 2015 DOE:***\$150M** ARPA-E (FY14): *****\$33M

Number of Recipients funded from 2008-2015						
Industry >110						
Universities	>100					
Laboratories 12						

 $^1\text{Hydrogen}$ Fuel R&D includes Hydrogen Production & Delivery R&D and Hydrogen Storage R&D $^2\text{Estimated}$ from FY14 appropriation

More stable R&D funding requests and appropriations in recent years > 20 new projects including 11 new Incubator projects (2014-2015)

- Continue to strengthen R&D activities and accelerate Tech to Market (Lab impact)
 - H₂, fuel cells, safety, manufacturing, etc.
 - Cost, performance, durability need to be addressed
- Conduct strategic, selective demonstrations
 - Industry cost share and potential to accelerate market transformation
- Continue to conduct key analyses to guide RD&D and path forward
 - Life cycle cost; infrastructure, economic & environmental analyses, etc. (e.g. Medium/heavy duty vehicle target setting underway)
- Leverage activities to maximize impact
 - U.S. and global partnerships, H2USA, States

- Annual Report
- Prior input on Program Requests
 - H₂ cost target revision \checkmark
 - H₂ Production Expert Panel \checkmark
 - Feedback on H-Prize \checkmark
 - Manufacturing subcommittee \checkmark

Request to HTAC for Future Areas of Input:

- Program Plan revision (previous update 2011)
- Increasing outreach/awareness and State collaboration
- H₂ Energy Storage (Enabling Renewables) Subcommittee

Thank You

Dr. Sunita Satyapal

Director

Fuel Cell Technologies Office

Sunita.Satyapal@ee.doe.gov

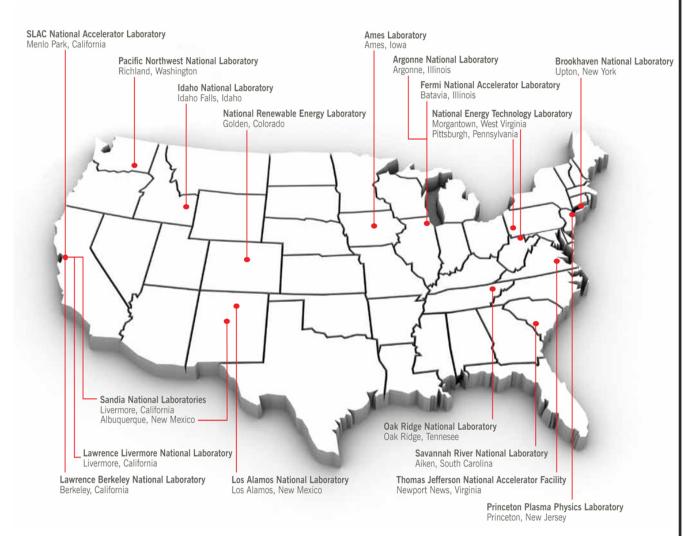
hydrogenandfuelcells.energy.gov

Additional Information

EERE Lab Impact Initiative

Mission: significantly increase the industrial impact of DOE national labs on the U.S. clean energy sector!

- Increase and enhance labprivate sector relationships
- Increase and streamline access to national lab capabilities
- Demonstrate the value of labdeveloped science and technology



Energy Efficiency & Renewable Energy

DOE Labs: A Reservoir of Talent for Science and Technology

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 28

Where in the US?

How Many?

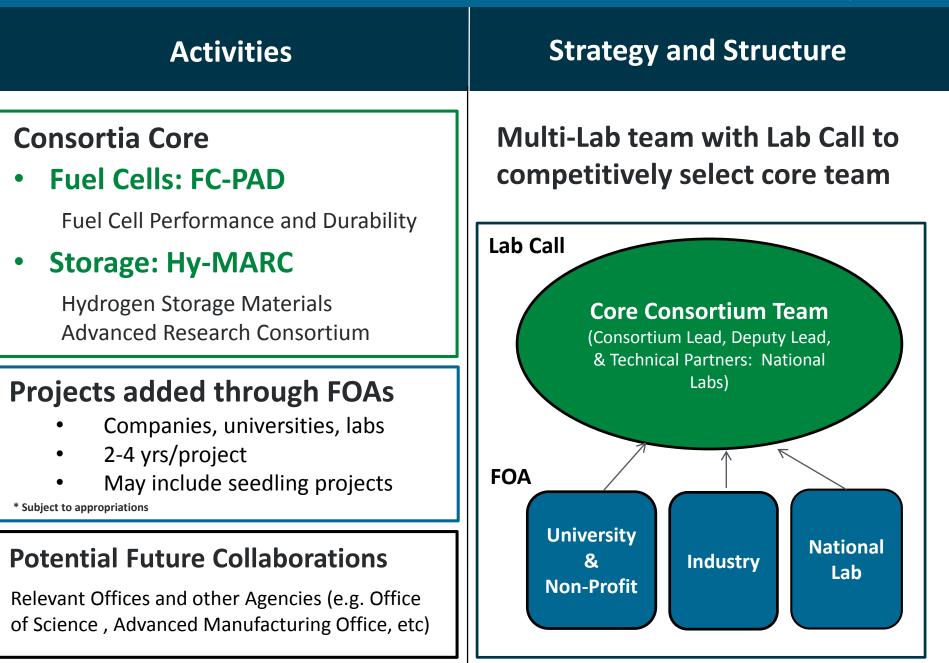
17 Facilities

- 10 Office of Science
- 3 NNSA
- 1 Nuclear Energy
- 1 Fossil Energy
- 1 Energy Efficiency and Renewable Energy
- 1 Environmental Management

~ 66,000 Total Employees

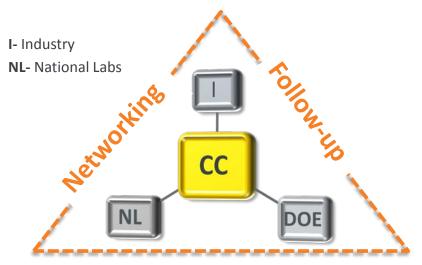
Over 50 Nobel laureates affiliated with DOE Labs

Graphic taken from "A Decade of Discovery" DOE. 2008


Tech-to-Market (T2M) Strategy for National Labs

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 29

T2M Strategy		Activities	Goals
	Increase Industry Contact	 Business-to-Business Product Theater at conferences Manufacturing Road Show Small Business Vouchers 	Increase Market
	Listen to the Voice of the Customer	 Key Staff Exchange with industry and national labs Site visits, Feedback sessions at ECS 	Understanding Improve Private
T2	Develop Technology Transfer Skills	 Business Plan Development Training Lab Corps 	Sector and National Lab Relationships


Improving technology transfer and targeted impact from lab to market

Lab Consortia Approach

T2M Activities at the **Electrochemical Energy Summit**

- Seminar to **demystify the process** of working with National Labs
- Poster Session to highlight National Labs' unique capabilities and opportunities in fuel cells and electrochemical systems
- **Collaboration Corner (CC)** for networking and follow up

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 31

ElectroChemical Energy Summit 2015

Featuring Hydrogen Fuel Cells and Electrochemical Systems Sponsored by the Fuel Cell Technologies Office Phoenix Convention Center, Phoenix, Arizona

PLENARY SPEAKER

Monday, October 12, 2015 at 8:00 am Lynn Orr Under Secretary for Science and Energy U.S. Department of Energy

DOE EERE LAB TECH TO MARKET SHOWCASE

On Tuesday, October 13, join us at these two one-day-only events to increase collaboration between national labs and industry: R

LEVERAGING THE LABS | 12:45-1:45 PM

The first session will demystify the process of working with national labs and discuss the mechanisms from the first (oral) session on industry problems.

LAB SHOWCASE | 5:30-6:30 PM

The second (poster) session will highlight technologies developed at the national labs, their unique capabilities, and opportunities for collaboration.

Following presentations from each lab, representatives will be available in the room to further discuss their industrial solutions.

3-D X-ray Tomography of a mixed-potential hydrogen sensor at LANL. Sensor response is controlled by the kinetics of the electrode reactions occurring at the gas-electrode-electrolyte interface

ш

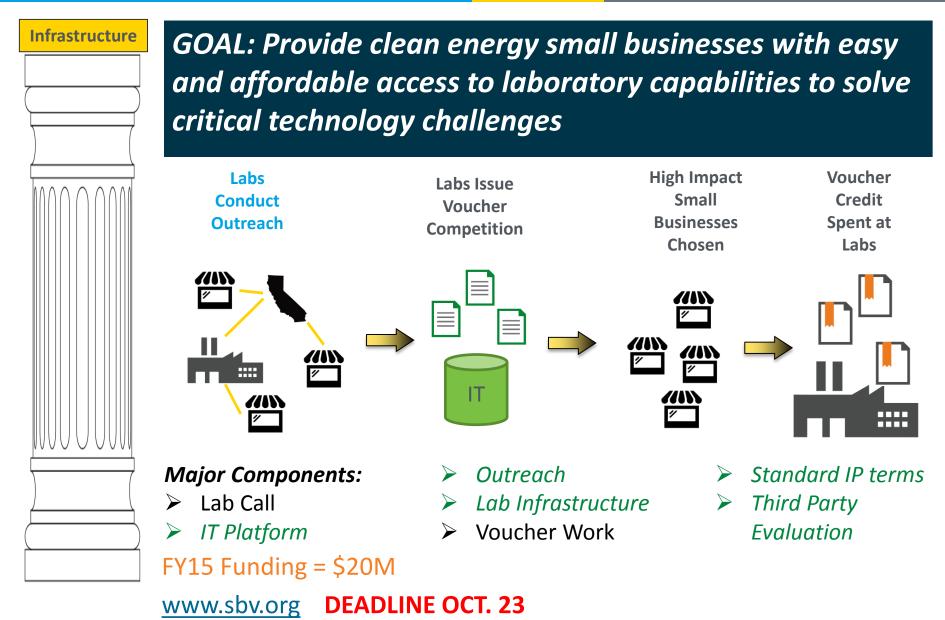
£

C

Energy Efficiency & Renewable Energy

NREL has received four Fuel Cell Hybrid Vehicles-Advanced (FCHV-adv) on loan from Toyota, enhancing their research capabilities related to hydrogen fueling infrastructure.

Xiaoping Wang of Argonne National Laboratory prepares a cell for testing the activity of fuel cell catalysts

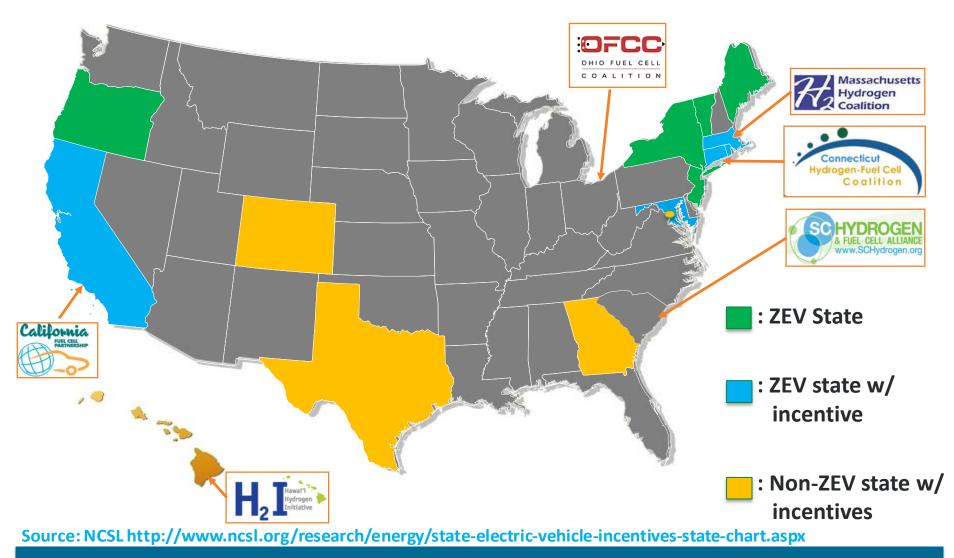

EERE-funded research has:

- · Reduced cost of fuel cells by more than 50% since 2006 and 30% since 2008
- Achieved a more than five-fold reduction in the platinum content of fuel cells Led to more than 500 patents, 45 commercial technologies, and 65 emerging
- technologies that will be commercialized in the next 3-5 years http://energy.gov/eere/fuelcells/downloads/2014-pathways-
- commercial-success-technologies-and-products-supported-fuel

www.energy.gov/eere/fuelcells

Small Business Vouchers (SBV): Unleashing Infrastructure

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 32

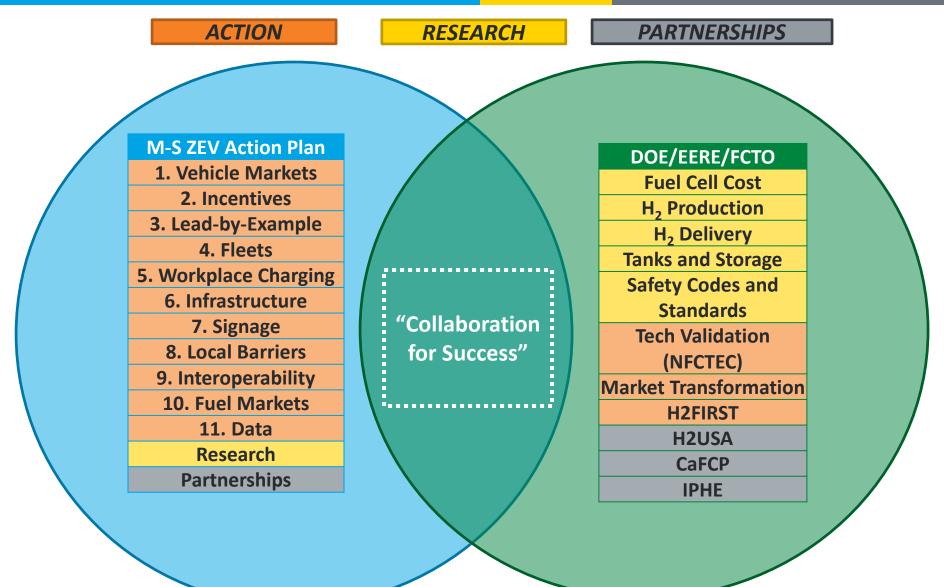

State-related information

State FCEV/H2 Incentives and Partnerships

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 34


9 states (4 ZEV state) offer incentives for FCEVs and H₂ station deployment

Examples of Activities Supporting ZEV Action Plan

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 35

• Example of State Activities

	Pre	Preliminary Analysis- Economic Impact Summary							
	ст	NY	MA	ME	NH	RI	VT	NJ	Regional
Total Employment	2,529	1,728	964	18	45	32	16	111	5,443
Total Revenue / Investment in 2010 (\$ million)	\$496	\$292	\$171	\$2.9	\$8.7	\$6.9	\$3.3	\$26.5	\$1,009
Total Supply Chain Companies	599	183	322	28	25	19	5	8	1189

The Connecticut Center for Advance Technology, Inc.

www.ccat.us

DOE Jobs Tool developed by ANL to estimate H2 and FC jobs potential

International Collaboration

International Partnership for Hydrogen and Fuel Cells in the Economy

- Representatives from 17 member countries & the European Commission
- Facilitates international collaboration and a forum for advancing policies education
- Recent Activities (thru RCS WG):
 - International Maintenance and Reliability Data Sharing Initiative (U.S., Japan, and EC)

3rd International Infrastructure Workshop (June 2015 in Tokyo, Japan)

Organized by NOW, DOE and NEDO

- Included ~60 participants from Germany, the EU, Scandinavia, Japan and the U.S.
- The FCHJU has offered to host the 4th in June 2016 in the Netherlands

Alamos

- Objective: To enable international information exchange on hydrogen infrastructure challenges in four key areas:
 - Refueling,

Hardware Reliability & Performance

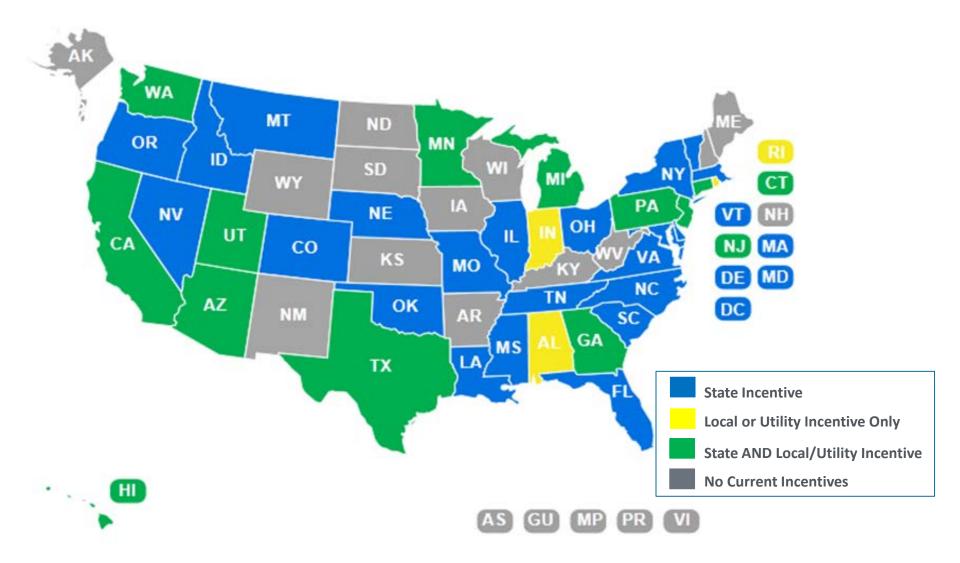
AIST

National Laboratories

6th International Conference on Hydrogen Safety

October 19-21, 2015 in Kawasaki/Yokohama, Japan (Hosted by Technova)

National Laboratory-Level Collaboration


MOU between Sandia National Laboratories (SNL) and AIST

Hydrogen Quality,

Metering, and

- Hydrogen Storage Vessels
- Technical cooperation of SNL with I2CNER
 - Hydrogen Materials Compatibility
- LANL collaboration with JARI
 - Fuel Quality

U.S. DEPARTMENT OF ENERGY | Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 38

Source: NCSL (http://www.ncsl.org/research/energy/state-electric-vehicle-incentives-state-chart.aspx)

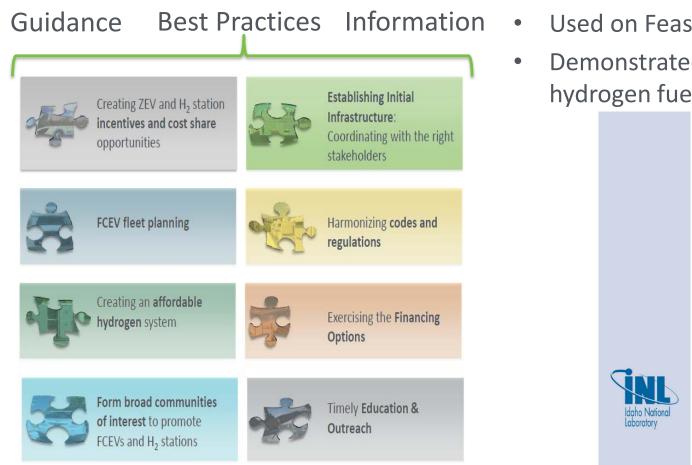
37 states + DC offer incentives: Financial, HOV lanes, parking, reduced utility rates, etc.

	California	Connecticut	Maryland	Massachusetts	New York	Oregon	Rhode Island	Vermont
Top 3 Questions or concerns on H2 or FCEV	Path to higher capacity stations	Revise options to incent fleets	Cost (stations, vehicles and fuel)	Proof of H2 generation benefits	How will OEM's create demand for FCEV	Reasons for states to invest in H2	H2 location and access choice	Station funding and metrics for same
	Safety for non-OEM product refueling	DOE tech and financial station assistance	Safety of stations	H2 station funding path	How do we fund instructure	What are H2 storage tech breakthrough	What is car and station timing to market	Will there be a variety of FCEV types
	Station verification	DOE role in Café standards to help FCEV	Gaurantee sufficient vehicles available	Location, location, location	What are best FCEV market segments	Why not just wait for CA to show success		Has cold weather use been addressed
		DOE coordination of all clean tech						No H2 from NG
Top 3 EV or CNG Learnings or Advice to H2 Group	Incentivized charging works	Convenience is key to consumers	Station sites must be proven locations	Tunnel travel exemptions	Vehicle type matters to launch	Consider flexible transporation funding	Consumer law changes and tax generation	Confidence refueling site #s are enough
	DC fast charging is growing	Value proposition must compete	Installation costs always exceed estimates	Fire Marshall permit guidance to locals	Location of infrastructure IS important			Need OEM help marketing the cars
		Must have range and station redundency	Local zoning can be a hurdle		Right market segment / base load helps			Limited # of qualified dealers is an issue
		Assure fed programs reduce GHG						Some EV lessons not relavent to FCEV's
Priorities from your state for DOE	Support for H2FIRST	Use fed rules & SEPS to leverage \$'s	Funding / Incentives	Finance / Funding	Do not know	Look at H2 storage beyond compressed	Way to share lessons learned	How to pick where to go first with H2
	MD/HD FCEV market development	Coordinate DOE \$ opps with states	H2 Education	Regional station location map		Guidance for state for H2 station design	Home fueling option	Station permitting facilitation
	Support for large volume H2 station work	Assure CCC alignment with ZEV plans	Well defined standards			Describe variable H2 station business model	Way to pass along progress	Support and funding on incentives
Top 3 P		Standardize stations to lower H\$ pricing						Fund consumer education & awareness

Examples of Identified Current and Future Activities

- Promoting public-private partnerships to overcome H₂ infrastructure challenges (e.g., H2USA), including outreach for code officials and first responders.
- Providing State of the States annual reports with emphasis on FCEV progress in ZEV states.
- Coordinating public "ride-and-drives" in ZEV states. (e.g. Alternative Wheels event -Boston, Fuel Cell Seminar)

- Collaborating with other agencies and industry to identify opportunities for stations.
- Identifying and promoting a successful model of partnering with station owners/operators to provide access to clean fuels.
- Developing infrastructure cost analysis in key ZEV states such as MA, RI, CT with H2USA coordination.


A B C D E F G H I	
Preview of ACTION # 1: Sales ACTION # 2: Incentives ACTION # 3: Leading by Example	ample
1 2 Access Education Non-Cost Partnerships Forum Data Pure	Purchase
Supporting Actions Matrix	
ACTIOUS IVIALUIX (Common decal) partnerships Forum (Common decal)	Actions
4 Public & Stakeholder X X X X	
5 Market Support and Acceleration H2USA Website, FAQs X X	
Joint Codes &	
6 Standards Task Force 7 Station Siting	
Investment and Financial Incentives & x x x x	
9 Group Coordination X X	
Activities 10 H2USA Station Cost & X	
11 Hydrogen Fueling Station Equipment & Component R&D	
Station Working Group Regulations, Codes & Standards; Addressing 12 Market Barriers	
Regional Station X 13 Metrics Coordination	

Infrastructure Guide and Cost Estimation Tool in Development

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 41

DOE is helping to develop a H2USA Infrastructure Guide and a Cost Estimating Model aimed to help relevant stakeholders address challenges related to H₂ and FCVs.

Infrastructure Guide

Cost Estimation Tool

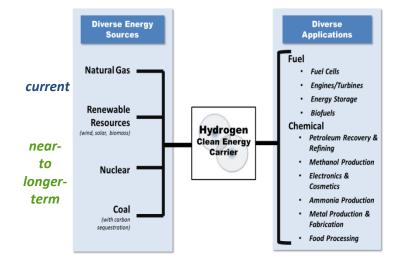
- Used on Feasibility Study for Hawaii
- Demonstrated profitability of hydrogen fueling station

	INL/EXT-14-31624 Revision 0
	Hydrogen Fueling Station in Honolulu, Hawaii Feasibility Analysis
	Porter Hill – INL Michael Penev – NREL
	August 2014
Idaho National Laboratory	The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance

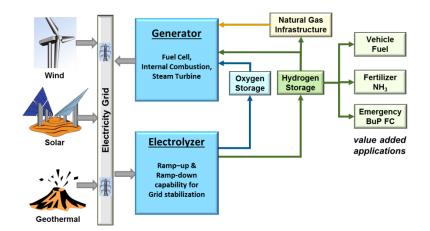
Examples of relevant areas from QTR

QTR Feedback

Major challenges:


Reduce the cost of producing and delivering H_2 from renewable/low-carbon sources for FCEV and other uses (capex, O&M, feedstock, infrastructure, safety, permitting, codes/standards)

• Factors driving change in the technologies:


- FCEVs are driving requirements (e.g. high P tanks)
- Need to reduce cost of 700 bar refueling stations for near-term FCEV roll-out

Where the technology R&D needs to go:

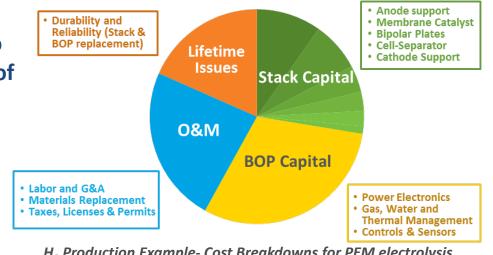
- Materials innovations to improve efficiencies, performance, durability and cost, and address safety (e.g. embrittlement, high pressure issues)
- System-level innovations including renewable integration schemes, tri-generation (co-produce power, heat and H₂), energy storage balance-of-plant improvements, etc.
- Cost reductions in H₂ compression, storage and dispensing components
- Continued resource assessments to identify regional solutions to cost-competitive H₂

H₂ offers important long-term value as a clean energy carrier

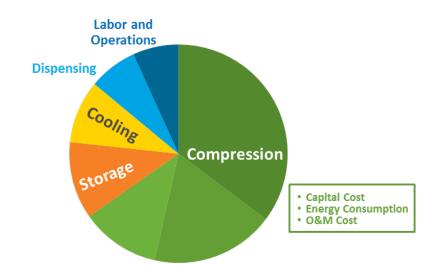
Renewable energy integration options with hydrogen

Note: H2 storage on-board FCEVs is addressed in Ch. 8

QTR - Hydrogen Analysis and Research Goals


U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Fuel Cell Technologies Office | 44


 Reduce the cost of H₂ from renewable and low-carbon domestic resources to achieve a delivered & dispensed cost of <\$4/gge (Note: 1 kg H₂~1 gge)

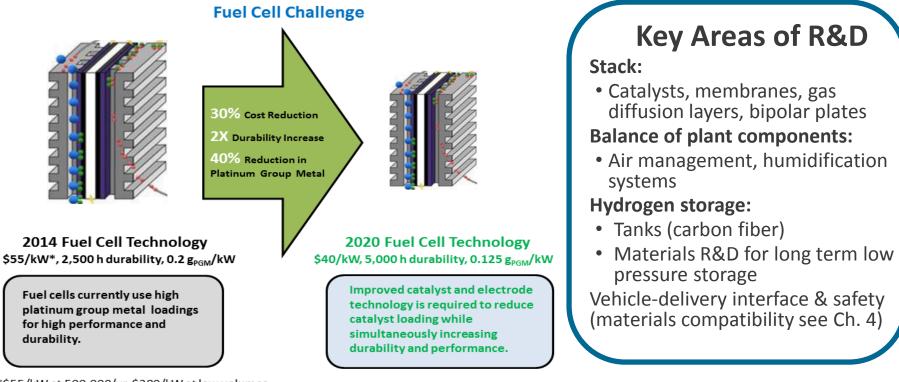
Pathways:

- Electrolysis, high temperature thermochemical (solar/nuclear), biomass gasification/bio-derived liquids, coal gasification with CCS, biological & photoelectrochemical
- Need R&D in materials and components to improve efficiency, performance, durability, and reduce capital and operating costs for all pathways
 - For many pathways, feedstock cost is a key driver of H₂ cost
- Need strong techno-economic and regional resource analysis
- Opportunities for energy storage (e.g. curtailed wind for electrolyzing water)

*H*₂ Production Example- Cost Breakdowns for PEM electrolysis, (excluding electricity feedstock costs)

H₂ Delivery Example- Compression, Storage and Dispensing (CSD) Cost Breakdown for the Pipeline Delivery Scenario FCEVs refuel in a few minutes, have a wide range of vehicle sizes and performance requirements, achieve a >300-mile driving range, and have zero emissions from tailpipe

U.S. DEPARTMENT OF


Energy Efficiency &

Renewable Energy

Fuel Cell Technologies Office | 45

• Key issues are: fuel cell cost and durability and on-board hydrogen storage (hydrogen production, delivery, and infrastructure covered in Ch. 4)

Fig 8.15 in QTR Chapter 8 of 2015 QTR

*\$55/kW at 500,000/yr, \$280/kW at low volumes

Previous HTAC recommendations and additional program/strategic information

Key HTAC Recommendations and Responses (April 2015 Meeting)

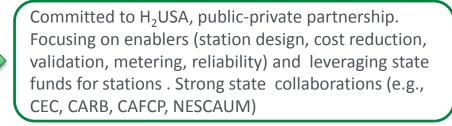
U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 47

Recommendations

Key Responses

Emphatic public support for FCEV deployment to inspire confidence and increase public awareness.

Stronger commitment to R&D to ensure U.S. technology leadership.


Collaboration with infrastructure initiatives in Germany, Japan, Korea, and the UK on technical and regulatory issues to reduce cost and accelerate deployment.

Direct investment in H2 infrastructure as part of a integrated strategy or comprehensive National Energy Policy to accelerate deployment and attract private investment.

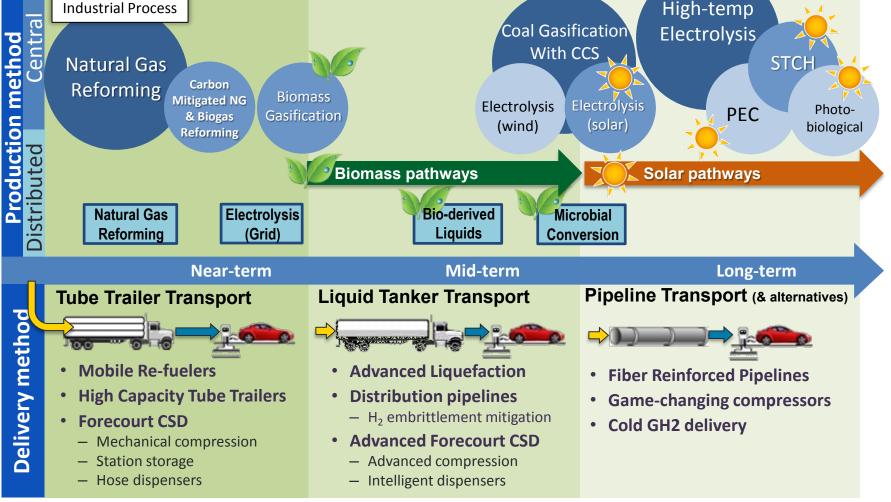
Published ~ 80 news articles/blogs, etc. /yr; trained 30,000 code officials/first responders, 12,000 teachers. Secretary driving FCEV video; Remarks at DC autoshow, Secretary tweet ; FedEX Memphis event, Investor days; House/Senate Caucus events.

H2 & fuel cells are part of President's all-of-the-above strategy. >500 patents; 40 commercial technologies. FY16 budget request (\$103M) for FCTO 10% higher than FY15 request. SOFC FY16 request (\$9M) vs. \$3M in FY15. Moving towards funding stability.

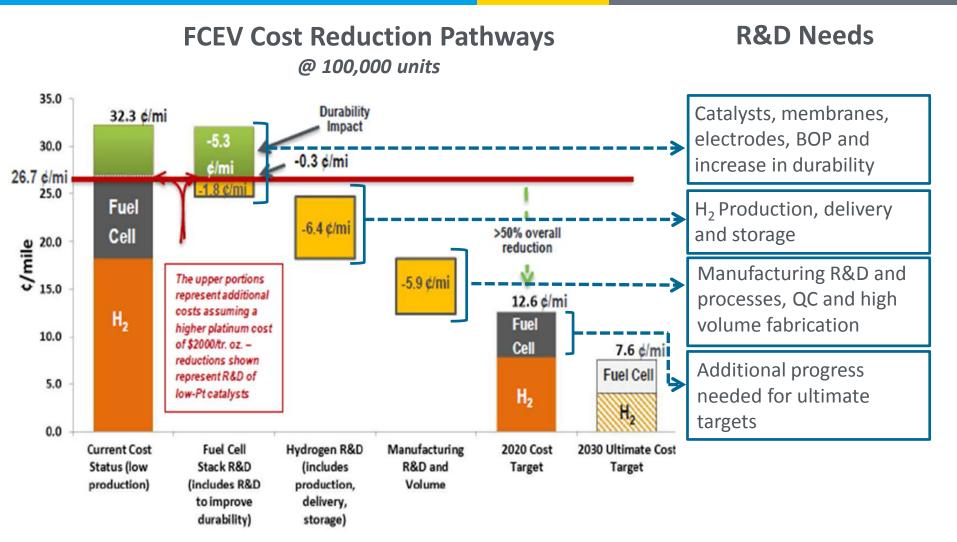
DOE serves as Vice Chair of IPHE (17 countries); Coorganized int'l workshops and webinars; multicountry round robin, safety/reliability database sharing, data collection.

DOE H₂ and Fuel Cells Strategy

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy Fuel Cell Technologies Office | 48


BARRIERS			NEAR TO MID-TERM	LONG-TERM	_
	Fuel Cell Cost and Durability		Low PGM catalysts , MEAs, performance durability, components	Non PGM Catalysts AEMs	
R&D			700 bar tanks, composites, cryo- compressed	Materials R&D for low P storage	
	Hydrogen Production and Delivery		H ₂ from NG/electrolysis; delivered H _{2,} compression	H ₂ from renewables (PEC, biological, etc.), pipelines, low P option	Level of Difficulty
	Infrastructure		Enablers: H2FIRST-	Materials compatibility,	High
NON-R&D	Development		Station validation, metering, sensors, etc.	sensors, station innovation- H-Prize	Medium
	Manufacturing and Supply Chain		Catalyst, MEA and tank manufacturing and QC; cost & reliability; supply chain	Mfg. processes and scale up; strong supply base	Low to Medium
	Safety Codes and Standards (SCS)		Set back distances, fueling protocols, Safety Dissemination	Risk mitigation; National and International harmonization of SCS	
	Public Acceptance and Awareness		H2Tools Education, Outreach; Early markets; H2USA	Widespread Outreach, Education & Social Acceptance	

H₂ Production & Delivery Technology Strategies


Established

U.S. DEPARTMENT OF Energy Efficiency & MERC Renewable Energy

The portfolio must consider near-term infrastructure rollout needs as well as the longer-term transition to large-scale renewable hydrogen

Total cost of ownership analysis identifies key R&D needs to be competitive with incumbent and other advanced technologies

Stakeholder Engagement prior to FOA Topics

ENERGY Energy Efficiency & Renewable Energy **Fuel Cell Technologies Office | 51**

Workshops

- Early Market Fuel Cell Showcase and Project Review- 2013
- Clean Energy Technology Showcase Review- 2014
- Hydrogen Transmission and Distribution Workshop held- 2014
- Electrolytic Hydrogen Production Workshop- 2014
- RD&D needs identified include: materials development at the cell component level; improved electrolyzer stack and system efficiency with high temperature electrolyzers highlighted as having potential advantages in this area
- DOE Materials-Based Hydrogen Storage Summit: Defining pathways for onboard automotive applications- 2015
- Take-aways: (1) Need for higher-risk projects with potential to significantly change the current stateof-the-art. (2) Leverage/combine efforts across material storage pathways; emphasis on computational analysis; work with fundamental hydrogen storage studies (e.g. BES)

RFIs

- Strategies for a robust market introduction of hydrogen supply, infrastructure, and FCEVs- 2014
- Existing and potential hydrogen contamination detectors- 2014
- Technical and economic feasibility of commercializing fuel cell range extenders as onboard power generators for electric vehicles-2014
- Advanced Thermal Insulation of Composite Materials for Long-term Cold and Cryogenic H₂ Storage On-Board FCEVs- (Planned release date September 15, 2015)

Ongoing

- USDRIVE Tech Teams
- HTAC
- H₂USA/H₂FIRST
- CaFCP and State Agencies

More than \$20M in new projects

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 52

Recipient	DOE Award	Location	Project		
Oregon State University		Corvallis, OR	Novel Hybrid Microbial Electrochemical System for Efficient Hydrogen Generation from Biomass		
3M Company	\$3.0M	St. Paul, MN	Highly Active, Durable, and Ultra-low PGM NSTF Thin Film ORR Catalysts and Supports		
General Motors LLC	\$3.0M	Pontiac, MI	Highly-Accessible Catalysts for Durable High-Power Performance		
NREL	\$3.0M	Golden, CO	Extended Surface Electrocatalyst Development		
Illinois Institute of Technology	\$3.0M	Chicago, IL	Corrosion-resistant non-carbon electrocatalyst supports for PEFCs		
lvys, lnc.	\$2.0M	Waltham, MA	Advancing Hydrogen Dispenser Technology by Using Innovative Intelligent Networks		
Automated Dynamics	\$1.5M	Schenectady, NY	Continuous Fiber Composite Electrofusion Couplers		
Electricore, Inc.	\$1.3M	Valencia, CA	Innovative Advanced Hydrogen Mobile Fueler		
US Hybrid Corporation	\$3.0M	Torrance, CA	Northeast Demonstration and Deployment of fuel cell battery hybrid medium duty truck		
City of Ithaca	\$0.3M	Ithaca, NY	Ithaca, NY— an Exemplary Climate Community of Excellence for the Northeastern US		
Total Award: ~\$22 Million					

Manufacturing Highlights: 3 New Analysis Projects

Global Competitiveness Analysis including:

- Global Cost Breakdown
- Design for Manufacturing
- Value Stream Mapping

Integrated Network of Regional Technical Centers

Activities (Examples)

- Hold supply chain exchanges
- Promote cooperation between suppliers & standardization of component specs

- 1. East Coast (CCAT)
- 2. Midwest at the OFCC
- Central States at NREL's National Fuel Cell Technology Evaluation Center
- 4. West Coast (UC Irvine)

OHIO FUEL CELL

GLWN

Fuel Cell and H₂ Opportunity Center

- Comprehensive online database
- Project activities include:
 - Encourage supplier engagement
 - Release and maintain **public** directory
 - Conduct outreach campaign (social media, etc.)

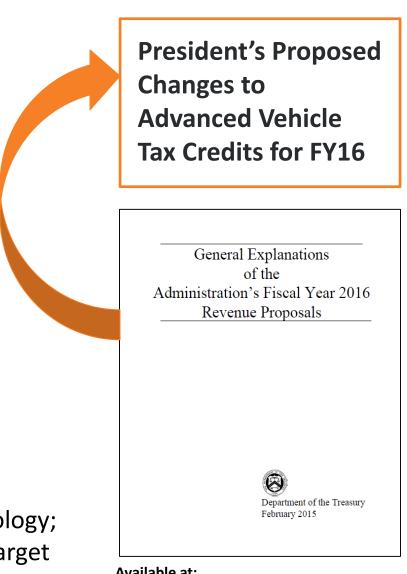
Collaborations and Partnerships

 U.S. DEPARTMENT OF
 Energy Efficiency &

 ENERGY
 Renewable Energy

 Fuel Cell Technologies Office | 54

R&D	Demonstration & Deployment	Accelerated Commercialization
<image/>	<image/>	<image/> <section-header><list-item><list-item><list-item><list-item></list-item></list-item></list-item></list-item></section-header>
Implementing Agreements25 countries	• State Partnership and Collaboration	 Public-Private Partnership >45 partners


Industry, academia and state & federal stakeholders working together

What's being proposed?

- **Extend the current plug-in electric** vehicle (PEV) tax credit to FCEVs (and other advanced vehicle technologies.
- **Remove the cap placed on number** of vehicles per manufacturer that can receive the credit
- Make credit up to \$10,000
- Increase flexibility on how the credit is passed on to the consumers (i.e. rebates)

Vehicle Requirements

- Operates on alternative to petroleum;
- 2. Few vehicles on the road using the technology;
- 3. Technology exceeds the footprint based target miles per gallon by at least 25 percent.

Available at:

http://www.treasury.gov/resource-center/taxpolicy/Documents/General-Explanations-FY2016.pdf