

International Collaboration

in Hydrogen Analysis

International Energy Agency (IEA)/International Partnership for the Hydrogen Economy (IPHE)

- "Building the Hydrogen Economy: Enabling Infrastructure Development
- Investigate the global infrastructure requirements for a hydrogen economy

International Partnership for the Hydrogen Economy (IPHE)

 Joint project to compare and contrast the EU HyWays and US H2A and GREET models

IEA/IPHE Project

Objectives:

- Convene public and private sector officials in an international strategic dialogue to refine and evaluate infrastructure transition planning scenarios for building out the hydrogen economy.
- Inform policy makers of opportunities to effectively advance these transition scenarios and to plan policy instruments.
- Using a portfolio of models and proven tools, quantitatively analyze hydrogen economy scenarios and market transformation planning for the world out to 2050.

IEA/IPHE Project

Plan:

- Hold three (3) workshops throughout the world
 - North America
 - Europe/Africa
 - Asia and Pacific Rim
- Convene public and private sector officials in an international strategic dialogue
 - Organize into breakout groups to discuss and identify key technical, institutional, financial opportunities and challenges for hydrogen infrastructure development
 - Mobile application group/s
 - Stationary and distributed power generation group/s
 - Modeling and analysis of hydrogen technology and infrastructure development group
- Prepare and issue a report

IEA/IPHE Project

Progress:

- Two workshops held in Detroit (North America) and Paris (Europe/Africa)
 - Workshop themes of North America and Europe/Africa
 - Planning and Design
 - What are the likely pathways for hydrogen infrastructure development?
 - What policy and market mechanisms and opportunities will have the greatest impact?
 - Construction and Engineering
 - What are the most significant technical, financial and institutional issues and barriers to engineering and construction of hydrogen infrastructure?
 - What policy and market mechanisms and opportunities can best address engineering and construction issues and barriers?
 - Operations and Maintenance
 - What are the most significant foreseen challenges to operating and maintaining hydrogen infrastructure?
 - What are the prospective policy, market and technology solutions to operating and maintaining the infrastructure?
 - North America workshop was held in April 2007
 - Europe/Africa workshop was held July 11 and 12, 2007
- Third workshop will be held in Shanghai (Asia and Pacific Rim) on October 24 and 25, 2007

IPHE Project

IPHE HyWays/US Model Comparison Project

IPHE Project Objectives

- Compare roadmapping and system analysis activities in Europe and USA (+other IPHE partners)
- Improve understanding about the ongoing activities (common language, mutual understanding, alignment of int'l approaches)
- Compare
 - Modeling approaches
 - Pathways that are relevant in each region
 - Basic technical and economic assumptions
 - Hydrogen pathway analysis results
 - Infrastructure analysis results
- Involve stakeholder consultation
- Institutional and personal exchanges
- 24 month project (Oct 2006 Oct 2008)

IPHE Work Plan

WP1 (Project Management)

Models being Compared in WP2

- E3database (EU)
 - Models hydrogen production and delivery pathways including scenarios, costs, and WTT and WTW energy and emissions
- H2A Production (US)
 - Financial calculation model with case studies available for different hydrogen production technologies
- HDSAM 1.0 (US)
 - Delivery-scenario model that calculates capital and operating costs for scenarios based on general inputs defined by the user
- GREET 1.7 (US)
 - Greenhouse-Gas, energy, and emissions tool that calculates WTW energy and emissions

- 1. 2007 onsite SMR FS
- 2. 2007 onsite grid-mix electrolysis FS
- 3. 2007 central (regional) biomass gasification pipeline FS
- 4. 2015 central SMR LH2 truck FS
- 5. 2015 central SMR– pipeline FS
- 6. 2015 central wind electrolysis pipeline FS
- 7. 2015 central coal gasification (CCS) pipeline FS
- 8. 2030 central SMR (CCS) pipeline FS
- 9. 2030 co-production of H2 and electricity (IGCC) with electricity credit LH2 truck– FS

Comparisons have begun for pathways in red

Legend:

- FS Fueling Station
- SMR Steam Methane Reformer
- LH2 Liquid hydrogen

CCS-Carbon capture and sequestration

Important Differences

Financial Parameters

	H2A & HDSAM	E3database
Financing	100% Equity	100% Debt
Taxes	35% Federal 6% State	None
Working Capital	15%	0%
Depreciation	MACRS	Straight Line

Resulting Cost + Return is greater in H2A & HDSAM

Important Differences

Production Analyses

- Expected differences
 - Capital costs
 - Biomass price
 - Utility prices
- Notable differences
 - Biomass conversion efficiency
 - E3 Data base efficiency (65%) is higher than H2A (45%)
 - Coal conversion efficiency
 - H2A efficiency (60%) is higher than E3 Data base (44%) for the near term case

Delivery Analyses

- Different modeling philosophies
 - HDSAM 1.0 designs a delivery scenario
 - E3database has a single chain for analyses without specific regionality (i.e., a single station with transport distances input by the user)
- US uses a lower vehicle fuel efficiency than EU
 - US uses 57.5 miles / kg vs. = 0.365 kW h / km
 - EU uses 89 miles / kg = 0.235 kW h / km
 - Due to differences in vehicle size, driving cycles, and estimation method
- Pipeline architecture (rings in HDSAM 1.0 vs. star in E3database)
- Dispensing pressure
 - H2A is 5,000 psi
 - E3 Database/EU is 10,000 psi

Energy and Emissions Analyses

Well-to-Tank (WTT) and Well-to-Wheels (WTW) analyses are being compared

Conclusions

- The project is underway to compare analysis approaches and models of the EU & US
- Developing a common understanding and language is challenging
- Financial parameters and technical parameters may need to be adapted to different world-regions

Thank You

For More Information

Systems Analysis

Fred Joseck (202) 586-7932 fred.joseck@ee.doe.gov