ENERGY SECURITY for the 21ST CENTUR

Well-to-Wheels Analysis

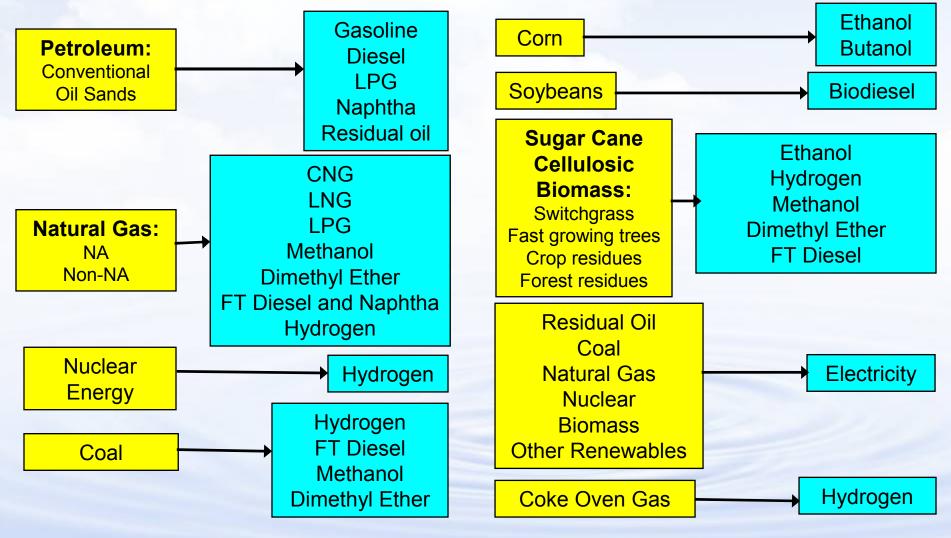
Presented to HTAC on July 31, 2007

Fred Joseck DOE Technology Analyst

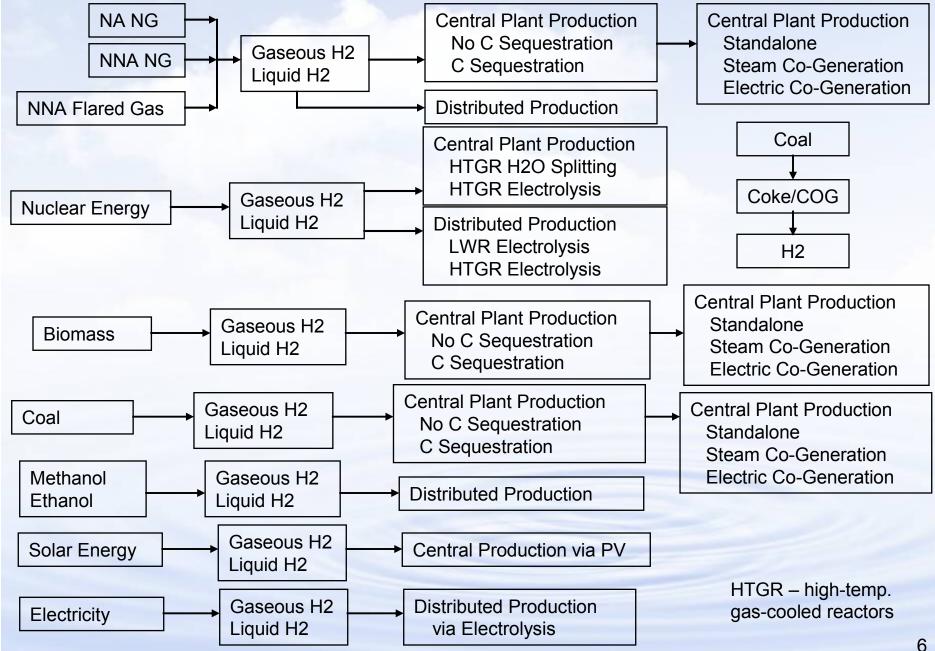
Michael Wang Argonne National Laboratory

DOE Hydrogen Program

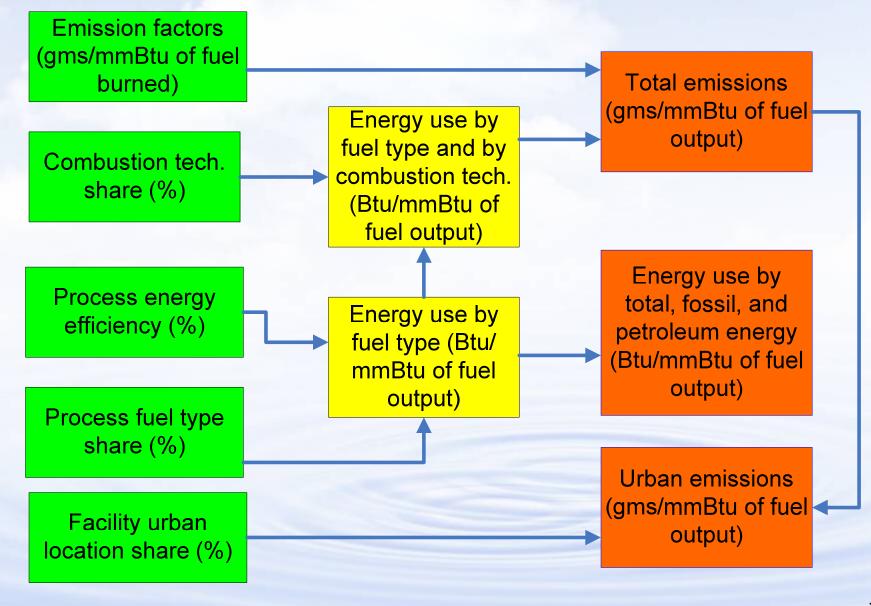
Outline


- Well-to-Wheels Analysis Methodology
- Greenhouse gases, Regulated Emissions, and Energy Transportation (GREET) Model
- H2A Production and Delivery Models
- Well-to-Wheel (WTW) Results
- Pathway Hydrogen Cost Results
- Comparison of H2A to NAS Study
 - Biomass comparison
 - Coal Gasification comparison
 - Others
- Summary

DOE Well-to-Wheels Analysis Methodology A "Systems" Approach Well-to-Wheels Overview Vehicle Cycle Fuel Cycle M H II M 3 Source: ANL Well to Pump Pump to Wheels Well-to-Wheels Modeling Process **Analysis Output** Vehicle Analysis (PSAT Model) Greenhouse Gas Emissions, Total (Output: Energy Use and Vehicle Fuel Economy) Petroleum Energy Use for WTP, PTW and WTW for pathways. Comparison of Hydrogen FCVs, H2 Energy Gasoline and & **Production &** Well-to-Wheels alternative fueled **Raw Materials** Delivery Analysis ICE & HEVs , Electric Data Inputs (H2A Model) and other vehicle (GREET Model) (Hydrogen platforms on a WTW Analysis basis. Resource Center)


The GREET (<u>Greenhouse gases</u>, <u>Regulated</u> <u>Emissions</u>, and <u>Energy use in Transportation</u>) Model

- Argonne GREET development effort has been funded by DOE since 1995
- Includes emissions of greenhouse gases
 - \succ CO₂, CH₄, and N₂O
 - \succ VOC, CO, and NO_x as optional GHGs
- Estimates emissions of six criteria pollutants
 - Total and urban separately
 - \succ VOC, CO, NO_x, SO_x, PM₁₀, and PM_{2.5}
- Separates energy use into
 - All energy sources
 - Fossil fuels (petroleum, natural gas, and coal)
 - Natural gas
 - Coal
 - Petroleum
- GREET and its documents are available at Argonne's website at <u>http://www.transportation.anl.gov/software/GREET/index.html</u>
 - New versions of GREET 1 and 2 series were released in June 2007
 - There are more than 3,500 registered GREET users worldwide


GREET Includes More Than 100 Fuel Production Pathways from Various Energy Feedstocks

GREET Includes Many Hydrogen Production Pathways and Options

Calculation Logic for a Given WTP Production Activity in GREET

Calculation Logic for a Given WTP Transportation Activity in GREET

GREET Includes More Than 75 Vehicle/Fuel Systems

Conventional Spark-Ignition Vehicles

- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- · Gaseous and liquid hydrogen
- Methanol and ethanol

Spark-Ignition Hybrid Electric Vehicles: Grid-Independent and Connected

- Conventional gasoline, federal reformulated gasoline, California reformulated gasoline
- Compressed natural gas, liquefied natural gas, and liquefied petroleum gas
- · Gaseous and liquid hydrogen
- Methanol and ethanol

Compression-Ignition Direct-Injection Vehicles

 Conventional diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel

Compression-Ignition Direct-Injection Hybrid Electric Vehicles: Grid-Independent and Connected

• Conventional diesel, low sulfur diesel, dimethyl ether, Fischer-Tropsch diesel, E-diesel, and biodiesel

Battery-Powered Electric Vehicles

- U.S. generation mix
- California generation mix
- Northeast U.S. generation mix
- User-selected generation mix

Fuel Cell Vehicles

 Gaseous hydrogen, liquid hydrogen, methanol, federal reformulated gasoline, California reformulated gasoline, low sulfur diesel, ethanol, compressed natural gas, liquefied natural gas, liquefied petroleum gas, and naphtha

Spark-Ignition Direct-Injection Vehicles

Conventional gasoline, federal reformulated gasoline, and California reformulated gasoline
Methanol and ethanol

WTW Key Assumptions and Data Sources

- WTP key assumptions
 - Energy efficiencies of fuel production activities
 - GHG emissions of fuel production activities
 - Emission factors of fuel combustion technologies
- WTP data sources
 - > Open literature
 - H2A models for H2 pathways
 - Engineering analyses such as ASPEN simulations
 - Stakeholder inputs
- PTW key assumptions
 - Fuel economy of vehicle technologies
 - Tailpipe emissions of vehicle technologies
- PTW data sources
 - > Open literature
 - Vehicle fuel economy simulations with models such as Argonne's PSAT model
 - > Tailpipe emissions with EPA Mobile, CA EMFAC, and vehicle testing results
- Large uncertainties exist in key assumptions
 - GREET is designed to conduct stochastic simulations
 - Distribution functions are developed for key assumptions in GREET

H2A Model

Background

Purpose

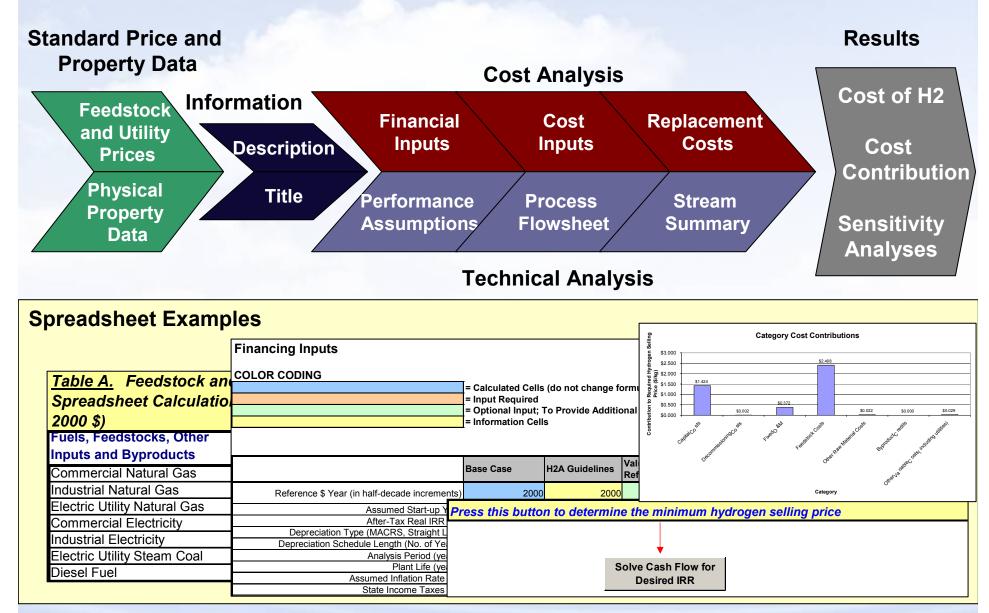
Improve transparency and consistency of analyses

- Improve understanding of the differences among analyses
- Seek better industry validation
- Analysis portfolio development
- Provide research direction

History

- Began in February 2003, financial support from U.S. DOE
- Developed by team of analysts from labs, industry, consulting firms, universities, and Key Industrial Collaborators (KIC)

H2A Model Description


- Excel spreadsheet
- Discounted cash flow rate-of-return analysis
- Constant Plant Utilization (ie. always at near full capacity operation)
- User enters:

Installed Plant Capital Cost
Replacement costs and other O&M

- Feedstock Consumption Rates/Efficiencies
- Feedstock Cost (can be constant or varying with year)
- Model returns:

Levelized selling price of hydrogen required to attain a specified internal rate of return

H2A Cash Flow Modeling Tool

Key Financial Parameters Forecourt and Central

- Reference year......(2005 \$)
- Debt versus equity financing.....(100% equity)
- After-tax internal rate of return....(10% real)
- Effective total tax rate......(38.9%)
- Design capacity......(varies)
- 0
- Length of construction period.....(0.5 3 years for central; 0 for forecourt)
- Production ramp up schedule......(varies according to case)
- Depreciation period and schedule..(MACRS -- 20 yrs for central; 7 yrs for forecourt)
- Plant life and economic analysis period....(40 yrs for central; 20 yrs for forecourt)
- Cost of land......(\$5,000/acre for central; land is rented in forecourt)
- Burdened labor cost......(\$50/hour central; \$15/hour forecourt)

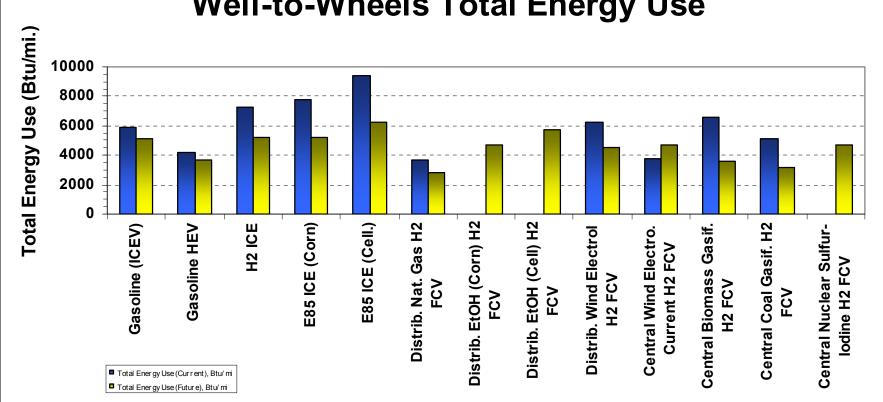
Hydrogen Production Strategy

Produce hydrogen from renewable, nuclear, and coal with technologies that will all yield virtually zero criteria and greenhouse gas emissions

Distributed Natural Gas

- Transition strategy
- "Well-to-wheels" greenhouse gas emissions substantially less than gasoline hybridelectric vehicle
- Not a long-term source for hydrogen (imports and demand in other sectors)

Nuclear/Renewable


- Electrolysis (one option)
- > Electricity not necessarily produced as an intermediary, options being pursued include:
 - Gasification of biomass
 - Reforming of renewable liquids
 - Photoelectrochemical
 - Photobiological
 - Thermochemical (solar and nuclear)

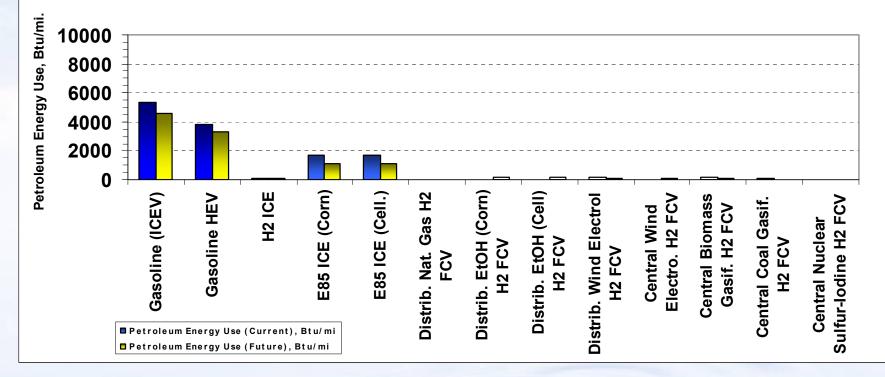
Coal

- Only with carbon capture & sequestration
- Gasification process produces hydrogen directly
- Electricity not produced as an intermediary

WTW Analysis Results

Well-to-Wheels Total Energy Use

Well-to-Wheels Total Energy Use

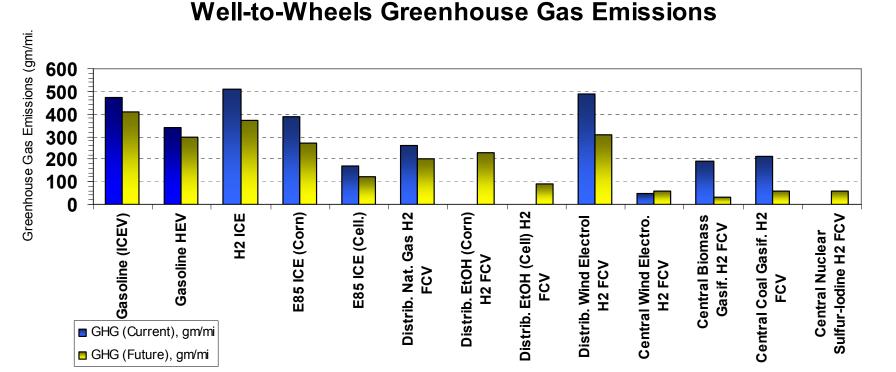

Vehicle Fuel Economy used in the analysis:

Fuel Economy, mpgge						
	Gaso. ICE	Gaso.HEV	E85 ICE	H2 ICE	FCV HEV	
2005	24	34	24	29	57	
2015	28	39	28	34	66	

Sources: H2A and GREET models

Well-to-Wheels Petroleum Energy Use

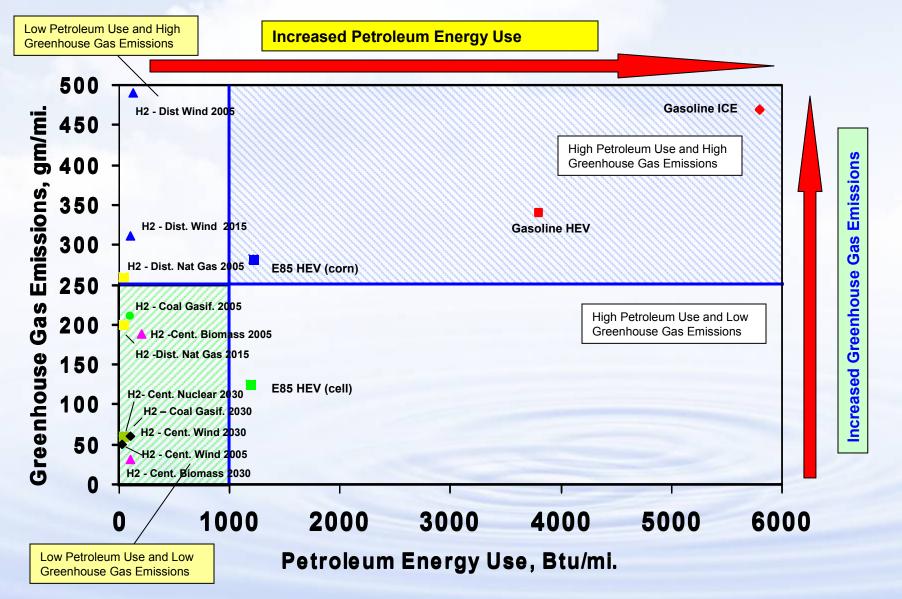
Well-to-Wheels Petroleum Energy Use

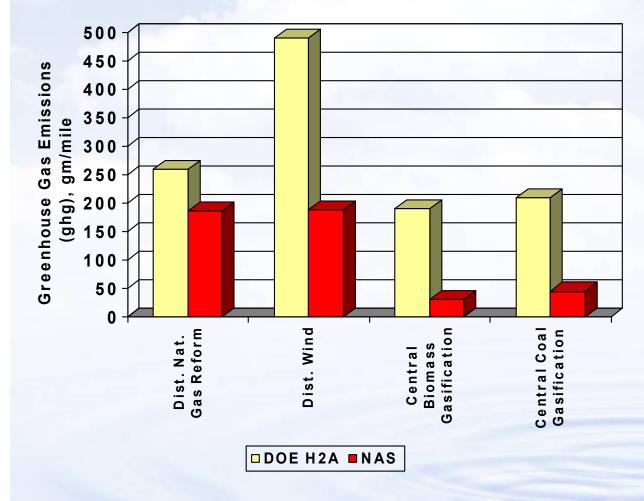


Vehicle Fuel Economy used in the analysis:

Fuel Economy	v, mpgge					
	Gaso. ICE	Gaso.HEV	E85 ICE	H2 ICE	FCV HEV	
2005	24	34	24	29	57	
2015	28	39	28	34	66	

Sources: H2A and GREET models


Well-to-Wheels Greenhouse Gas Emissions

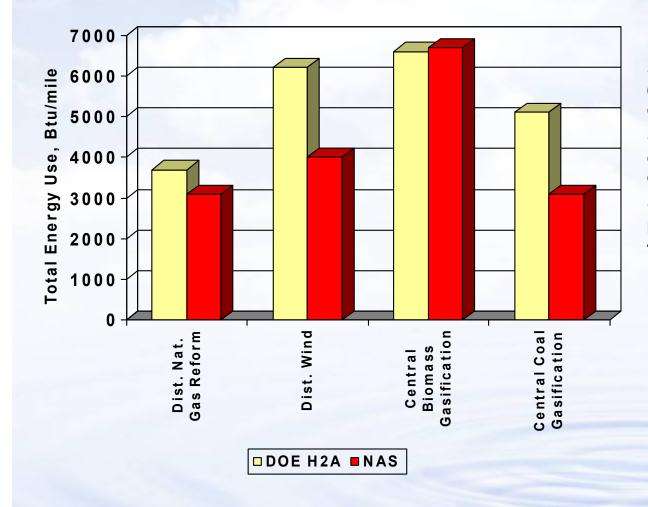

Vehicle Fuel Economy used in the analysis:

Fuel Econom	y, mpgge				
	Gaso. ICE	Gaso.HEV	E85 ICE	H2 ICE	FCV HEV
2005	24	34	24	29	57
2015	28	39	28	34	66

GHGs vs. Petroleum Energy Use for Technologies

Comparison of DOE and NAS Greenhouse Gas Emissions (GHG) for the Current Case

Differences and Assumptions


- NAS *only* includes the hydrogen production in their emissions estimates.
- DOE/ANL WTW GHGs are based on the total fuel cycle which includes the feedstock production, hydrogen production and delivery.
- Fuel Economy: The NAS used 65 mpgge and the DOE used 57 mpgge.
- Biomass case: The NAS assumed 70% production efficiency and DOE assumed 45% efficiency. DOE/ANL includes liquid truck delivery from a liquefaction plant.
- Central Coal: The NAS does not include delivery. DOE/ANL includes liquid truck delivery from a liquefaction plant.

• Source of DOE WTW information is from the ANL GREET model.

Source of NAS information is from the NAS report "Hydrogen

Economy: Opportunities, Costs, Barriers, and R&D Needs

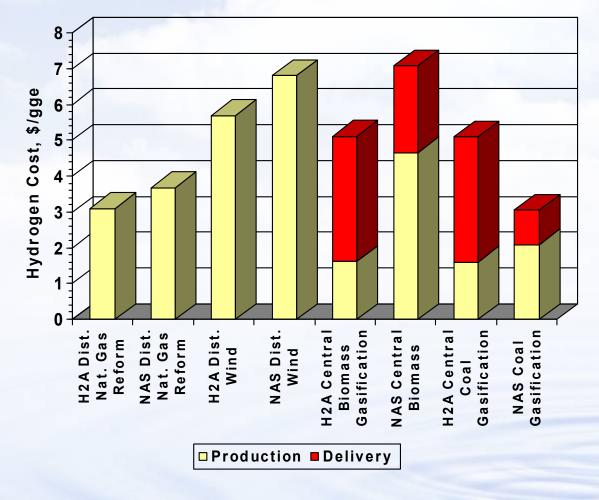
Comparison of DOE and NAS WTW Total Energy Use for the Current Case

Differences and Assumptions

• NAS uses a hydrogen fuel economy of 65 mpgge. DOE/ANL used a hydrogen fuel economy of 57 mpgge.

• NAS used pipeline delivery for the central coal case. The DOE/ANL used liquid delivery from a liquefaction plant.

• Biomass case: The NAS assumed 70% production efficiency and DOE assumed 45% efficiency.


• Source of DOE WTW information is from the ANL GREET model.

Source of NAS information is from the NAS report "Hydrogen

Economy: Opportunities, Costs, Barriers, and R&D Needs

Pathway Hydrogen Cost Analysis

Cost Comparison of DOE H2A and NAS Hydrogen Production Pathways for the Current Case

Differences and Assumptions

- Central Coal:
 - NAS assumes pipeline delivery and DOE assumes the current delivery is liquid truck for the Central Coal Gasification case.
 - Capacity difference

• Biomass case: The NAS assumed 70% production efficiency and DOE assumed 45% efficiency.

· Capacity difference

• Dist. Wind:

• The NAS assumed the cost of the electrolyzer was \$1228/kW and DOE assumed the cost was \$780/kW.

• The NAS assumed the size to be 480 kg/d for the production facility. DOE assumed the size to be 1,500 kg/d.

• The NAS assumed an electricity price of \$0.07/kWhr and DOE assumed price of \$0.05/kWhr.

Dist. Natural Gas:

• The NAS assumed the size to be 480 kg/d for the production facility. DOE assumed the size to be 1,500 kg/d. 24

• Source of DOE WTW information is from the H2A model.

Source of NAS information is from the NAS report "Hydrogen

Economy: Opportunities, Costs, Barriers, and R&D Needs

Comparison of NAS and DOE H2A Hydrogen Production from Distributed Natural Gas Reforming

Cost Elements	NAS H2 cost, \$/k	<u>kg. DOE H2</u>	2A Model H	<u> 2 cost, \$/ </u>	<u>kg</u>
Production					
Capital	1.64		1.33		
Feedstock	1.37		0.88		
Other variable	0.27		0.30		
Fixed	<u>0.23</u>		0.58		
Total	3.51		3.09		
4		Key Factor	H2A Dist. Natural Gas Assumption	NAS Dist. Natural Gas Assumption	Impact on the hydrogen cost
Hydrogen Cost, \$/gge 7.5 1.2 1.2 1.2 1.2		Hydrogen production rate	1,500 kg/day	480 kg/day	The lower rate increases the plant production cost due to economies of scale.
H Adros		Hydrogen production	69%	60%	The lower efficiency will

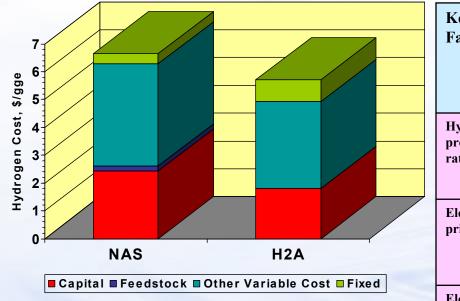
0.5

NAS

H2A

Capital E Feedstock Other Variable Cost Fixed

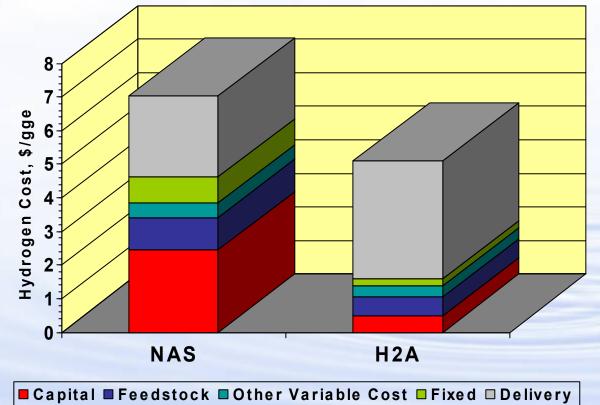
efficiency


hydrogen

production.

increase the cost of

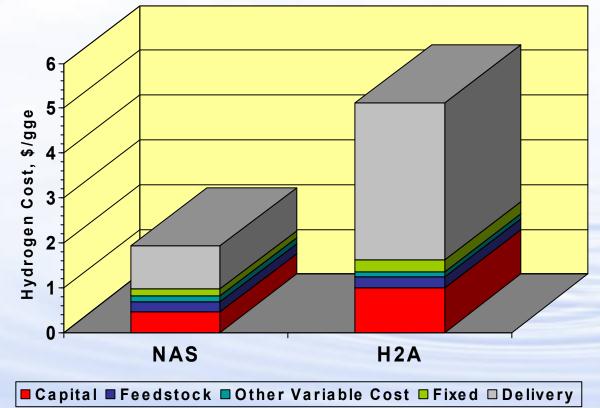
Comparison of NAS and DOE H2A Hydrogen Production from Distributed Wind Electrolysis


Cost Elements	NAS H2 cost, \$	NAS H2 cost, \$/kg. DOE H2A Model H2 cost, \$/kg				
Production						
Capital	2.44	1.80				
Feedstock	0.17	0.02				
Other variable	3.68	3.10				
Fixed	<u>0.35</u>	<u>0.80</u>				
Total	6.64	5.72				

Key Factor	H2A Dist. Wind Electrolysis Assumption	NAS Distributed Wind Electrolysis Assumption	Impact on the hydrogen cost
Hydrogen production rate	1,500 kg/day	480 kg/day	The lower rate increases the plant production cost due to economies of scale.
Electricity price	\$0.052/kWhr	\$0.07/kWhr	The higher electricity price will increase the cost of the hydrogen product.
Electrolyzer cost	\$780/kW	\$1228/kW	The higher electrolyzer cost will increase the cost of the hydrogen product.

Comparison of NAS and DOE H2A Hydrogen Production from Biomass Gasification

Cost Elements	NAS H2cost, \$/	kg. DOE H2A Model H2 cost, \$/kg
Production		
Capital	2.44	0.52
Feedstock	0.98	0.58
Other variable	0.44	0.31
Fixed	<u>0.77</u>	<u>0.21</u>
Total	4.63	1.62
Delivery	<u>2.42</u>	<u>3.50</u>
Total delivered H2	7.05	5.12

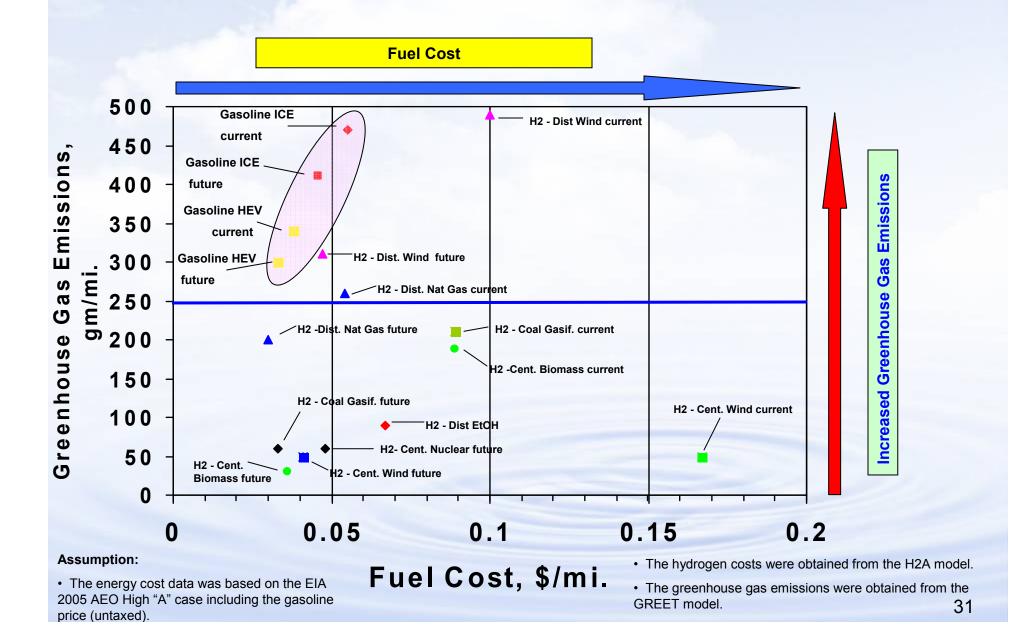


Comparison of NAS and DOE H2A Hydrogen Production from Biomass Gasification

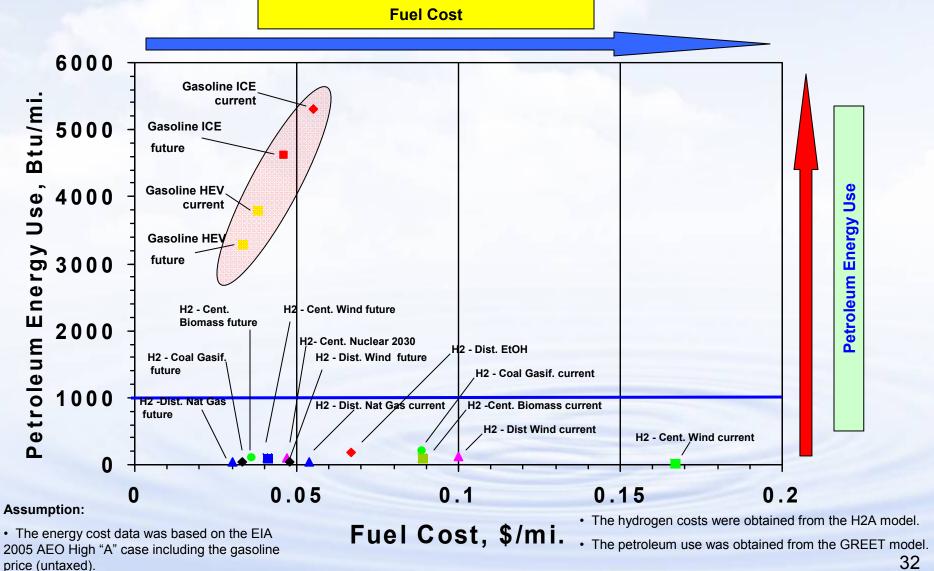
Key Factor	NAS Study Assumption	H2A Assumption	Impact on the hydrogen cost
Gasifier Type	Shell High Pressure Oxygen Blown Gasifier	Batelle Indirectly Heated, Low Pressure (without oxygen)	The Shell gasifier type has a significantly higher capital cost than the Batelle
Gasifier Operating Pressure, psia	1515	40	Higher pressure increases the equipment cost of the Shell gasifier.
Source of process oxygen	Cryogenic Air Separation Unit (ASU)	None	The need for the ASU for the Shell gasifier adds significant capital cost.
Hydrogen production rate	24,000 kg/day	155,000 kg/day	The lower rate will increase the plant production cost due to economies of scale.
Spare gasifier vessels	1	0	The spare, high pressure gasifier vessel will increase the capital cost and the cost of hydrogen.
Feedstock cost	\$53/dry ton	\$38/dry ton	The higher feedstock cost will increase the cost of hydrogen
Feedstock usage factor	15.1 kg of biomass/kg of hydrogen	13.6 kg of biomass/kg of hydrogen	The NAS configuration requires more biomass because 15% is used to dry the feedstock. The H2A model uses the process waste heat to dry the biomass. The higher feedstock usage factor will increase the hydrogen cost.

Comparison of NAS and DOE H2A Hydrogen Production from Coal Gasification

NAS H2cost, \$/kg. DOE H2A Model H2 cost,					
0.46	1.00				
0.21	0.24				
0.14	0.11				
<u>0.15</u>	<u>0.27</u>				
0.96	1.62				
<u>0.96</u>	<u>3.50</u>				
1.92	5.12				
	0.46 0.21 0.14 <u>0.15</u> 0.96 <u>0.96</u>				



29


Comparison of NAS and DOE H2A Hydrogen Production from Coal Gasification

Key Factor	H2A Coal Gasification Assumptions	NAS Coal Gasification Assumptions	Impact on the hydrogen cost
Gasifier Type	Texaco High Pressure Oxygen Blown Gasifier	Texaco High Pressure Oxygen Blown Gasifier	Not applicable
Gasifier Operating Pressure, psia	1515	1515	No difference
Source of process oxygen	Cryogenic Air Separation Unit (ASU)	Cryogenic Air Separation Unit (ASU)	No difference
Hydrogen production rate	308,000 kg/day	1,200,000 kg/day	The lower rate of the H2A coal gasifier increases the plant production cost due to economies of scale.
Spare gasifier vessels	1	1	No difference
Feedstock cost	\$30/tonne	\$32/tonne	The higher feedstock cost increases the cost of hydrogen of the H2A coal gasifier.
Feedstock usage factor	7.8 kg of coal/kg of hydrogen	6.5 kg of coal/kg of hydrogen	The higher feedstock usage factor increases the hydrogen cost for the H2A gasification.

GHGs vs. Fuel Cost for Technologies

Petroleum Energy Use vs. Fuel Cost for Technologies

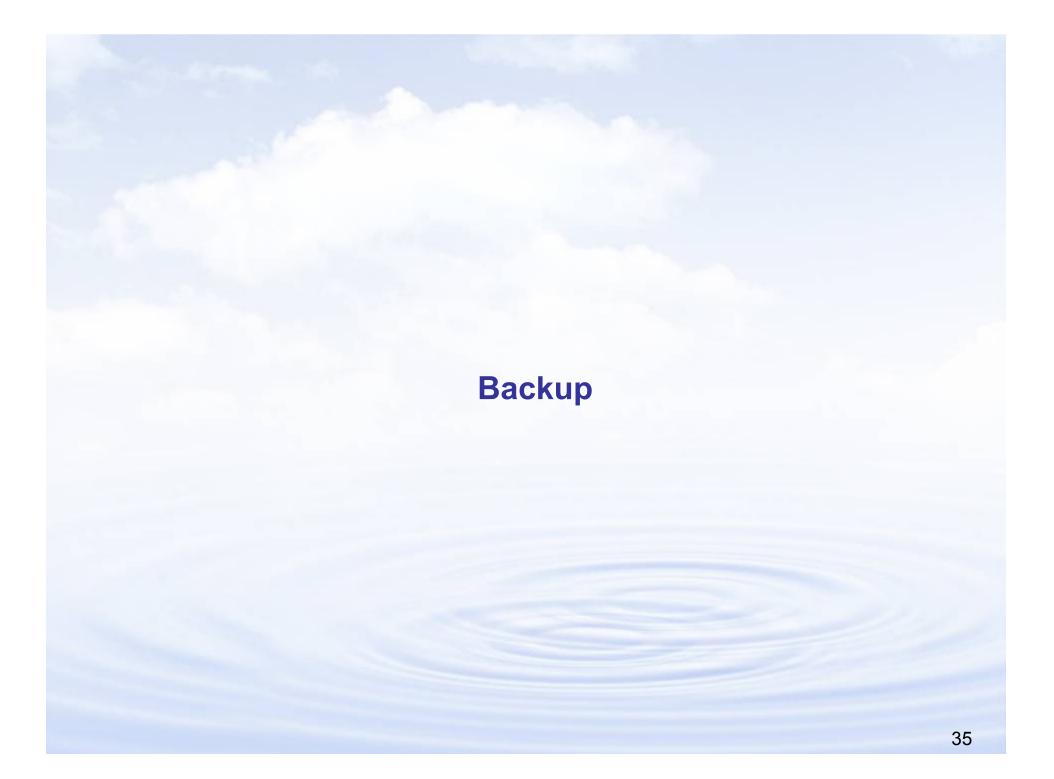
32

Summary

• Hydrogen provides the benefits of reducing petroleum use compared to other vehicle systems.

 Hydrogen produced from a portfolio of pathways will reduce greenhouse gas emissions from light duty transportation vehicles.

• Hydrogen fuel cell vehicles are competitive with gasoline vehicles on fuel cost, petroleum use and greenhouse gas emissions.

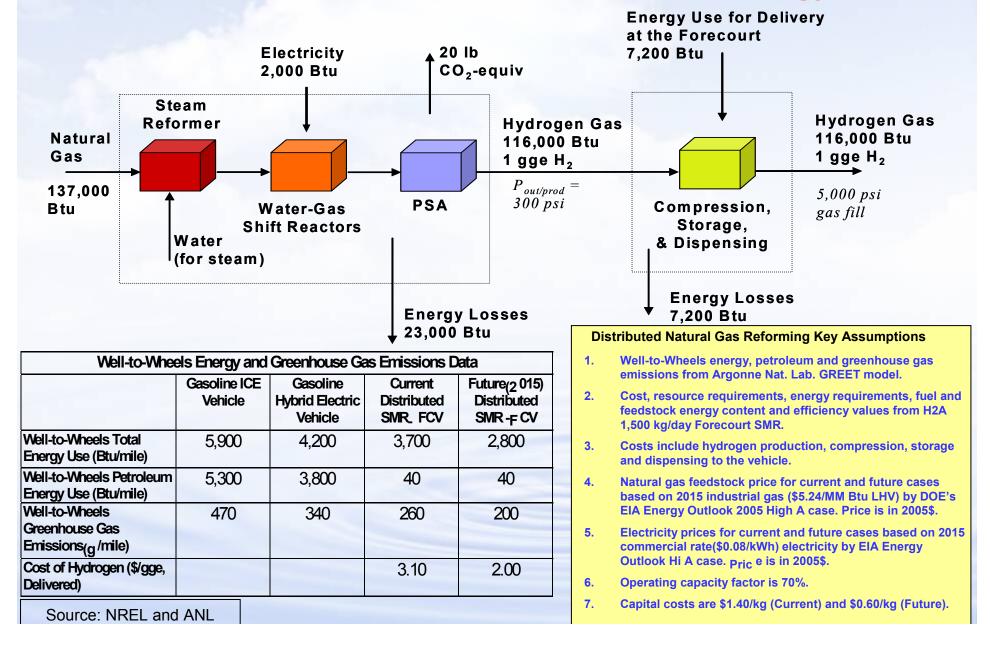

• Comparison of results of various studies can be difficult and not conclusive due to difference and transparency of assumptions.

Thank You

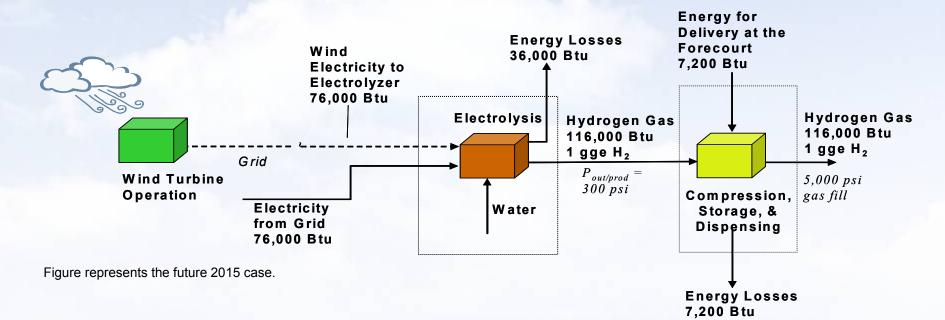
For More Information

Systems Analysis

Fred Joseck (202) 586-7932 fred.joseck@ee.doe.gov


Well-to-Wheels Analysis: Hydrogen Pathways Distributed Ethanol Reforming

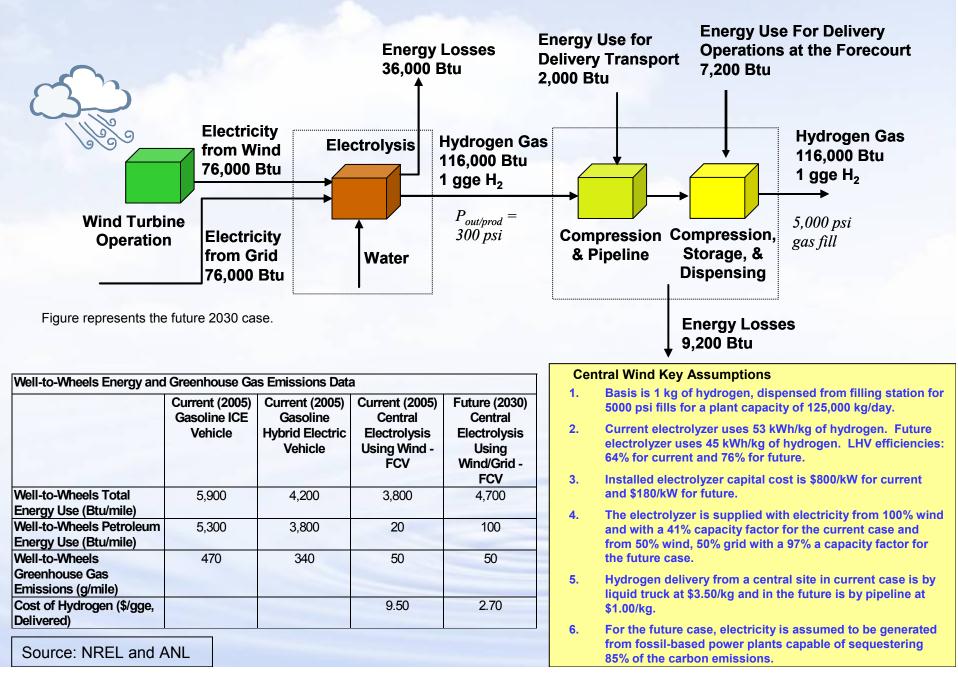
Well-to-Wheels Energy and Greenhouse Gas Emissions Data							
	Gasoline ICE Vehicle	Gasoline Hybrid Electric Vehicle	Distributed Ethanol Reformer - FCV				
Well-to-Wheels Total Energy Use (Btu/mile)	5,900	4,200	5740				
Well-to-Wheels Petroleum Energy Use (Btu/mile)	5,300	3,800	190				
Well-to-Wheels Greenhouse Gas Emissions (gm/mile)	470	340	90				
Cost of Hydrogen (\$/gge, delivered)			4.44				

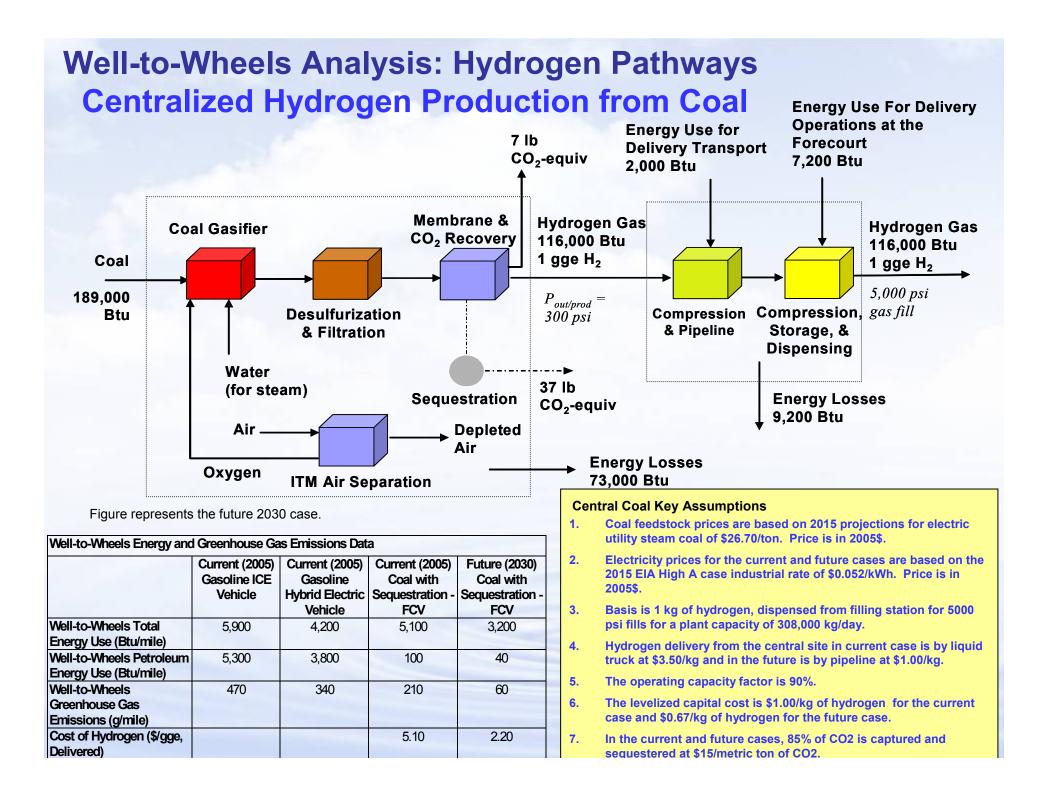

Distributed Ethanol Reforming Key Assumptions

- 1. Well-to-Wheels energy, petroleum and greenhouse gas emissions from Argonne Nat. Lab. GREET model.
- 2. Cost, resource requirements, energy requirements, fuel and feedstock energy content and efficiency values from H2A 1,500 kg/day Forecourt Ethanol Reformer.
- 3. Costs include hydrogen production, compression, storage and dispensing to the vehicle.
- 4. Ethanol feedstock price is based on the DOE Biomass Program's target of \$1.05/gal.
- 5. Electricity prices for current and future cases based on 2015 commercial rate(\$0.08/kWh) electricity by EIA Energy Outlook Hi A case. Price is in 2005\$.
- 6. Operating capacity factor is 70%.
- 7. Capital costs are \$1.47/kg.
- 8. Assumes the feedstock is cellulosic ethanol.

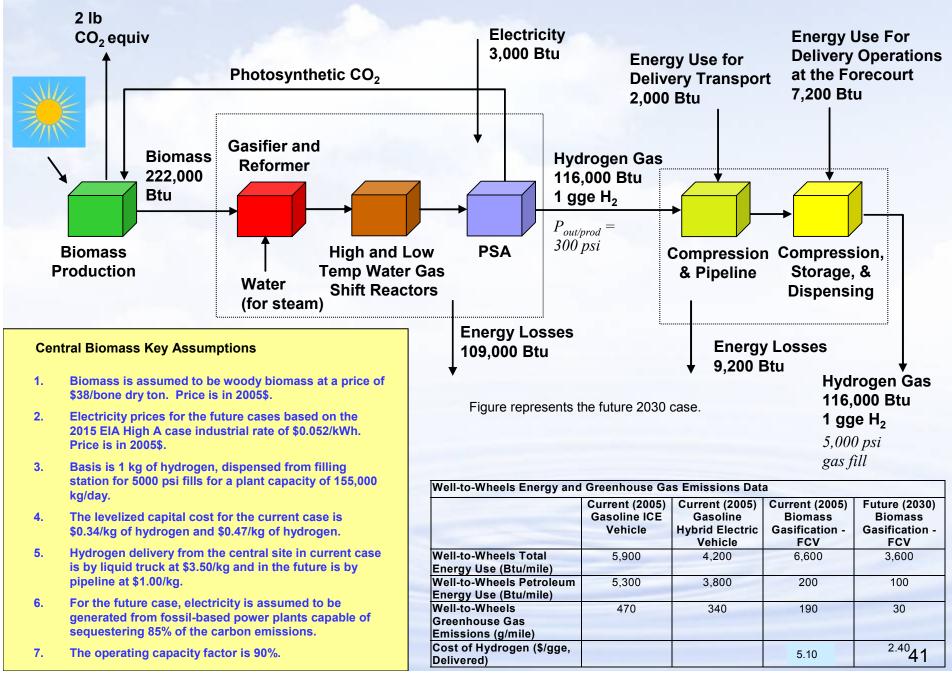
Well-to-Wheels Analysis: Hydrogen Pathways Distributed Natural Gas: Transition Strategy

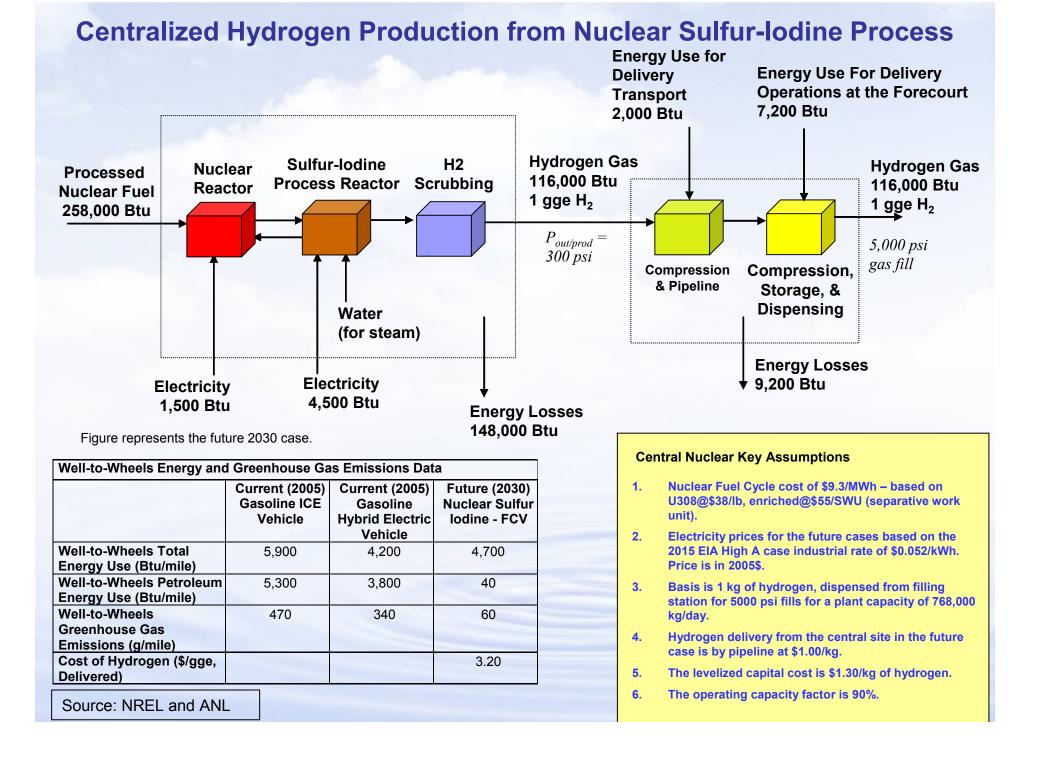
Well-to-Wheels Analysis: Hydrogen Pathways Distributed Hydrogen Production from Wind

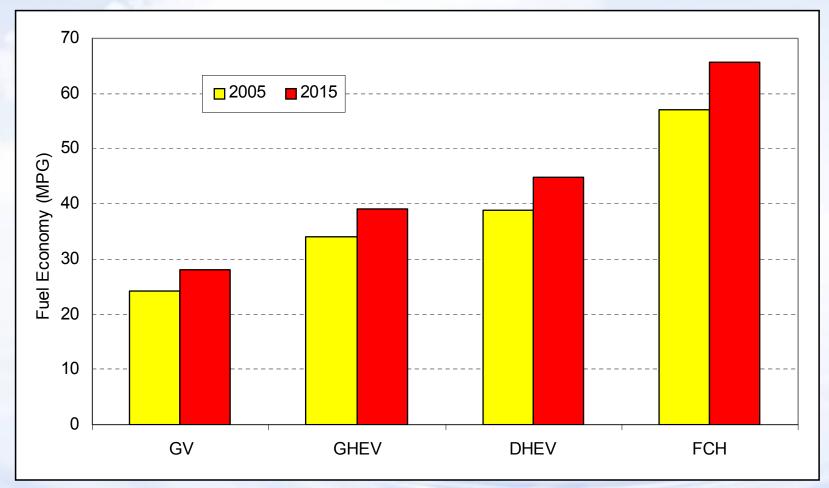

	Current (2005) Gasoline ICE Vehicle	Current (2005) Gasoline Hybrid Electric Vehicle	Current (2005) Distributed Electrolysis Using Wind/Grid - FCV	Future (2015) Distributed Electrolysis Using Wind/Grid - FCV
Well-to-Wheels Total Energy Use (Btu/mile)	5,900	4,200	6,200	4,500
Well-to-Wheels Petroleum Energy Use (Btu/mile)	5,300	3,800	130	100
Well-to-Wheels Greenhouse Gas Emissions (g/mile)	470	340	490	310
Cost of Hydrogen (\$/gge, Delivered)			5.70	3.10


Source: NREL and ANL

Distributed Wind Key Assumptions

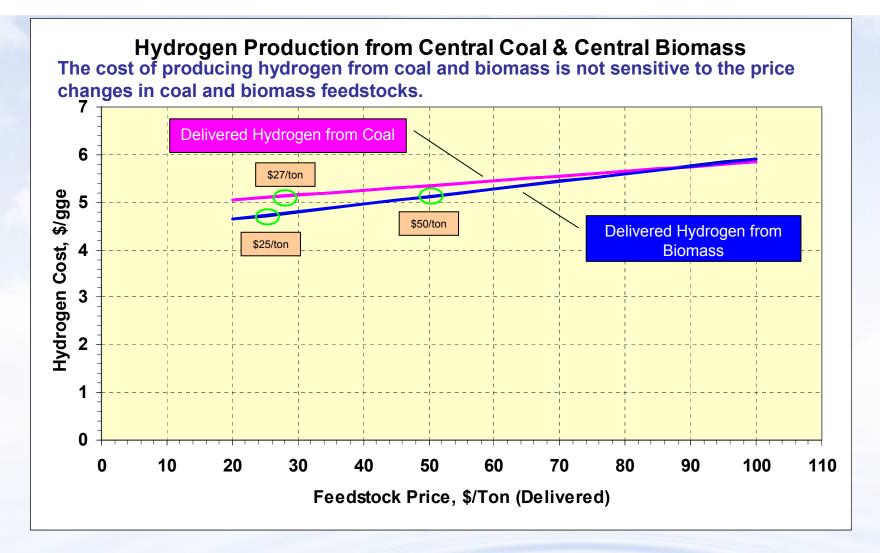

- Electricity prices for current case based on 2015 industrial rate(\$0.052/kWh) electricity by EIA Energy Outlook Hi A case. The future electrical price is \$0.038/kWh based on Excel estimate. Price are in 2005\$.
- 2. Basis is 1 kg of hydrogen, dispensed from filling station for 5000 psi fills for a forecourt capacity of 1,500 kg/day.
- Current electrolyzer uses 53 kWh/kg of hydrogen. Future electrolyzer uses 45 kWh/kg of hydrogen. LHV efficiencies: 64% for current and 76% for future.
- 4. Installed electrolyzer capital cost is \$730/kW for current and \$250/kW for future
- 5. Operating capacity factor is 70%.
- 6. The electrolyzer is supplied with electricity from 30% wind, 70% grid for the current case and from 50% wind, 50% grid for the future case.
- 7. Wind generated electricity is assumed to be transported via the electrical grid to distributed electrolyzers.


Centralized Hydrogen Production from Wind



Centralized Hydrogen Production from Biomass

DOE WTW Analysis Effort: Pump-to-Wheels (PTW) Fuel Economy Assumptions

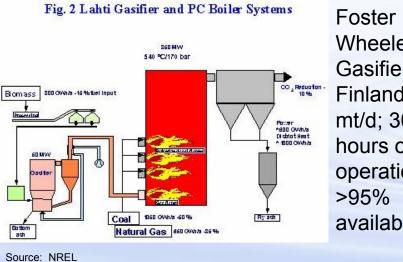

Legend:

GV – Gasoline ICE

GHEV – Gasoline Hybrid Electric Vehicle

DHEV - Diesel Hybrid Electric Vehicle

FCH – Fuel Cell Hybrid Electric Vehicle


Notes:

- O The numbers in the text box indicate the current prices for coal and biomass.
- Analysis based on H2A model for the current case.
- Hydrogen delivery includes liquefaction and liquid delivery costs.

Commercialization of Biomass Gasification

Commercial Biomass-to-Liquids Plant, Choren Industries, Freiberg Germany, 2007: 200 mt/d biomass, 2010: 2,000 mt/d biomass

Foster Wheeler CFB Gasifier, Lahti Finland, 1,445 mt/d; 30,000 hours of operation at >95% availability

300 ton/day gasifier Burlington Electric, VT

Varnamo Sweden, 100 mt/day, 6 MWe + 9 MWth demo run for 5 years, now being retrofitted for BTL