

FuelCell Energy, Inc. NASDAQ: FCEL

Product / Hydrogen RD&D Briefing HTAC Annual Meeting - Hartford July 15, 2009

reliable, efficient, ultra-clean

Corporate Overview

Background

- Connecticut based two operations, Danbury and Torrington
- 500 Employees R&D, Manufacturing Engineering, Plant Service and Corporate Corporate

Timeline

- 1969 Predecessor company, Energy Research Corporation (ERC) founded by to founded by to conduct research into fuel cells and advanced battery chemistries chemistries
- 1980's ERC focuses on high-temperature carbonate fuel cell research
- 1992 ERC successfully demonstrates a 120 kilowatt high-temperature carbonate carbonate
- fuel cell power system. ERC stock goes public
- 1996 A 2-megawatt ERC fuel cell system goes online in Santa Clara, California,
 California,
- costing \$20,000 per kW
- 1999 ERC splits off battery division into Evercel, Inc., and renames the company company
- FuelCell Energy (NASDAQ: FCEL)
- 2003 FCE ships first commercial Direct FuelCell unit to Kirin Brewery in Japan
 Japan
- 2003 to 2007 Over 60 units at over 40 installations worldwide

Worldwide Installations

Markets

- 65 MW installed/backlog
 - California/West Coast: 15 MW
 - Japan/Korea: 42 MW
 - Northeast/Canada: 4 MW
 - Europe: 2 MW
- Targeted applications
 - Grid Support: 39 MW
 - Renewable/Wastewater: 9 MW
 - Manufacturing: 6 MW
 - Hotels: 3 MW
 - University & Hospitals: 2 MW
 - Government: 3 MW
 - DFC-ERG 2 MW

Multi-MW and RPS Markets

- Connecticut Project 150
- POSCO Power agreement targets multi-MW potential in South Korea

FuelCell Energy

Typical Applications

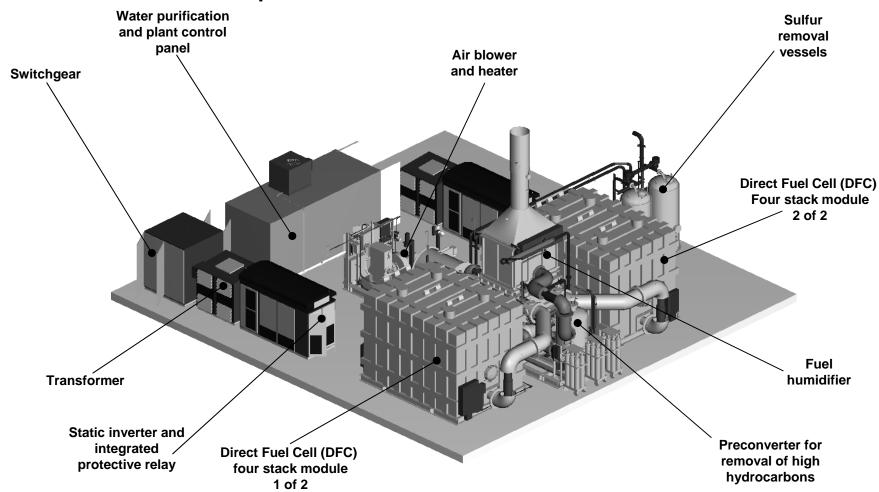
Small Commercial/Industrial, 300-Bed Hotels

300 kW

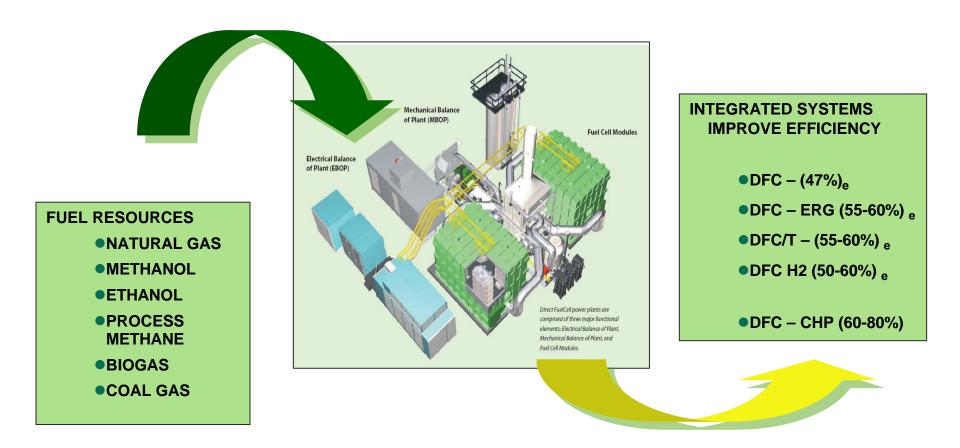

1.4 MW

1000-Bed Hotels, Wastewater Treatment, Food and Beverage Processors

300-Bed Hospitals, 2.8 MW Manufacturing, Universities



Grid Support, RPS 10 MW +



DFC 3000 2.8 MW

DFC3000 - General Powerplant Overview

Application Diversity

Diversity of Fuels plus High Efficiency – High Sustainability

On Site Applications

- Combined Heat and Power
- Hotels, universities, hospitals, manufacturing manufacturing
- Wastewater treatment facilities on biogas

CT Grid Side Applications

- Utility-side of the meter
- MW-Scale
- Renewable Portfolio Standards application, e.g. CT Project 150
- Heat uses not always available
 - Waste heat can be used to produce produce more power

DFC-ERG[™] - waste heat supports pressure letdown power generation generation in gas distribution system, >60% efficiency

Organic Rankine Cycle generation generation with waste heat from from DFC exhaust

Ultra high efficiency DFC/T systems systems

1.0 MW CHP >80% Total Efficiency

Newest Fleet Member

DFC 3000 (2.4 MW) - Gold Star Electric Power Station - Korea

Hydrogen Development and Demonstration

reliable, efficient, ultra-clean

DFC-H₂ Power Plant: Trigeneration System

DFC-H₂ POWER PLANT

kWs to electric load: 50%

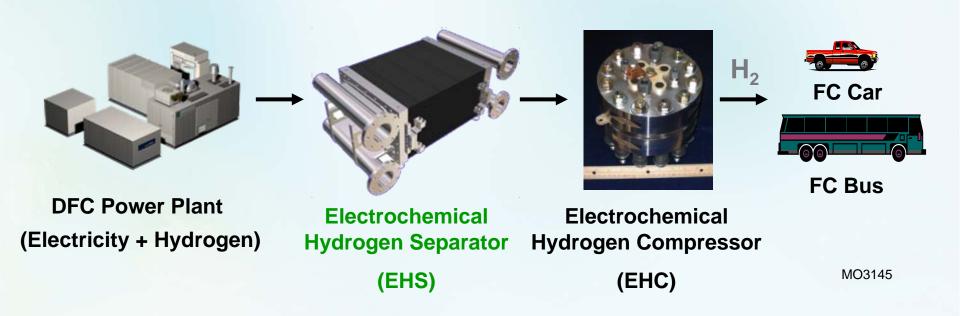
Heat to buildings thermal load: 15%

Hydrogen: 20%

H2 - REFUELING STATION

FuelCell Energy

Ultra-Clean, Efficient, Reliable Power

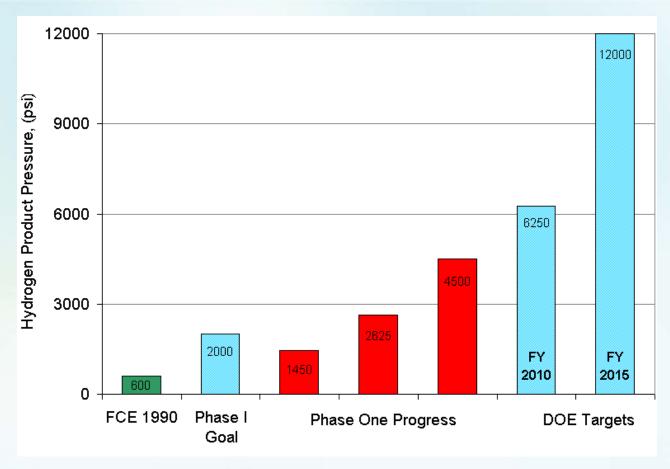

Submegawatt DFC-H₂ PSA – Testing at FCE (APCI-DOE Project)

PSA

Anode Exhaust Processing and H₂ Purification System:
Has been separating 200+ lb/day
Hydrogen for >2,000 hrs

The Modularity of DFC-H₂-EHC System is Uniquely Suitable for Hydrogen Refueling Applications

EHS System Demonstration at Univ. of CT


- Demo Unit separated 1200 liters/hr H₂ (up to 2700 lit/hr demonstrated) can refuel approx. one car per day
- >10,000 hours of operation
- Reliable operation, no EHS-related shutdowns

Energy Secretary Bodman visited the Unit at UConn in June 2006

Electrochemical Hydrogen Compressor Dev.

- Scaled up from single cell to 3-cell stack
- Tested 3-cell stack for >1,000 hrs at up to 3,000 psi

