

Economic Analysis of Bulk Hydrogen Storage for Renewable Utility Applications

Susan M. Schoenung susan.schoenung@sbcglobal.net Longitude 122 West, Inc.
10 May 2011

Project ID # MT-009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: May 2010
- Project end date: Nov 2011
- Percent complete: 70%

Budget

- Total project funding
 - DOE share: \$85K
 - Contractor share: \$0
- Funding received in FY10: \$85K
- Funding for FY11: \$ TBD

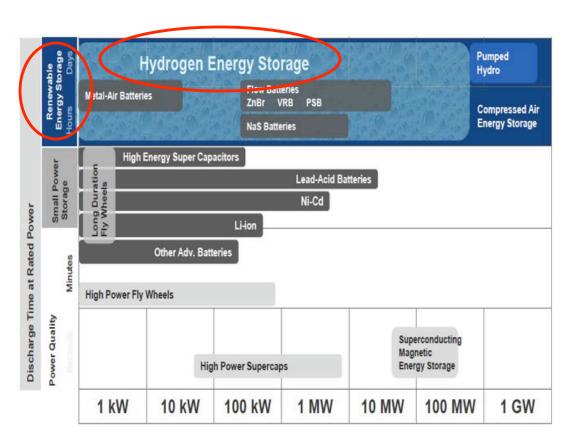
Barriers

 Non-technical barriers to commercializing hydrogen and fuel cells (per Pete Devlin March 9, 2011)

Partners

- Lead: Longitude 122 West
- Collaborator: Sandia National Laboratories

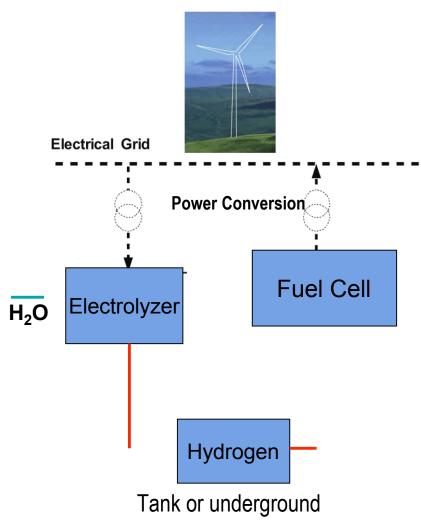
Accelerate the commercialization and deployment of fuel cells


Relevance - Objectives

- Address the market for large-scale storage of hydrogen & hydrogen technologies
- Enable greater penetration of clean renewable energy

production

Accelerate the commercialization and deployment of fuel cells



Facilitate the adoption of fuel cells across government and industry.

Approach - Activities / Milestones

Activity	Status
Update utility energy storage model to include	
purchase of curtailed wind energy	Complete
Update costs for fuel cell & hydrogen systems and other storage technologies and compare	Complete
Perform sensitivity analyses	Complete
Establish utility / renewables business case	Complete
Make benefit / cost estimates and draft business model	In progress

Step-wise approach to set up business model

Approach - Lifecycle cost analysis

Capital cost

-Electrolyzer

-Storage

-Fuel cells

Annualized life-cycle cost

-Capital

-O&M

-Replacements

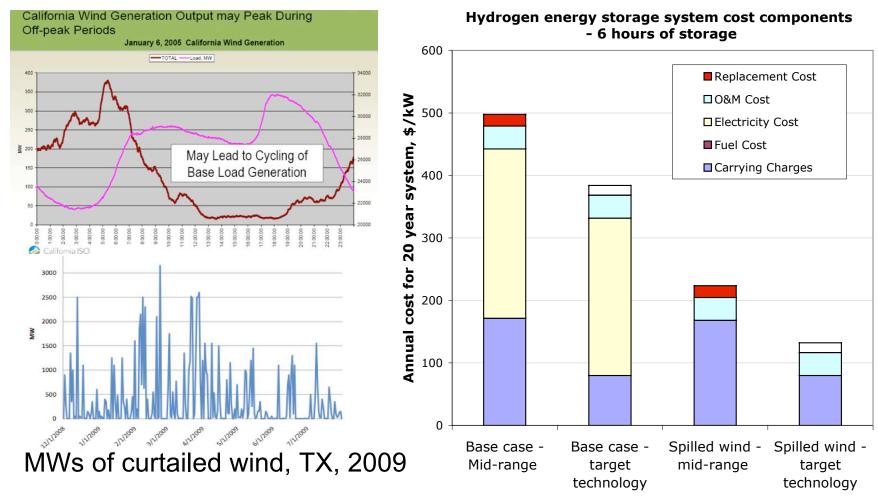
-Electricity

Present value cost

-20 year life

Duty cycle

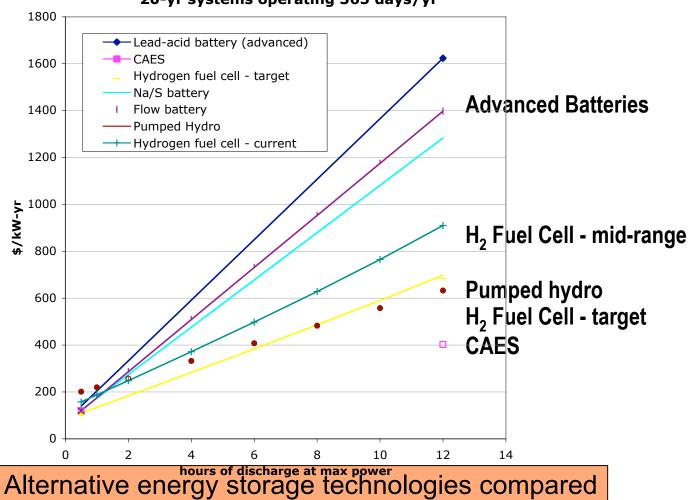
-7 days/wk


	Current efficiency	Target efficiency	Mid-range cost	Target cost	Reference
Electrolyzer	73%	75%	340 \$/kW	125 \$/kW	NREL, DOE2010
Gas storage	NA	NA	15 \$/kWh	9 \$/kWh	MYPP- Delivery
Underground storage	NA	NA	0.3 \$/kWh	0.3 \$/kWh	H2A, Lord
Fuel cell	55%	58%	700 \$/kW	434 \$/kW	NREL

Analysis builds on extensive expertise in energy storage and hydrogen.

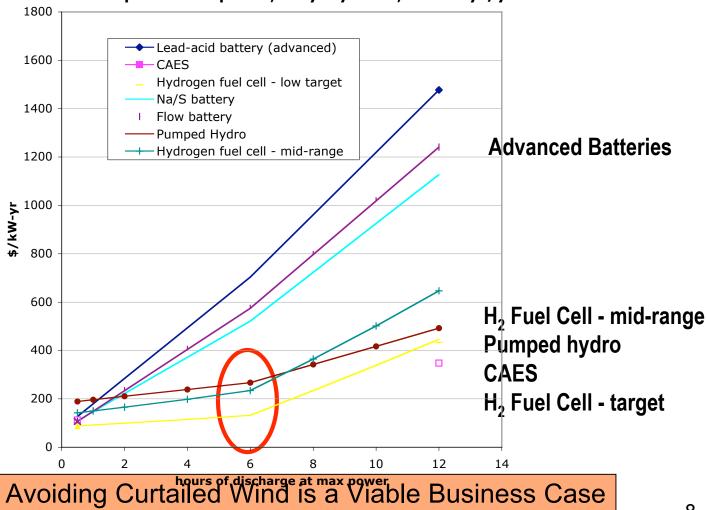
Analysis consistent with DOE MYPP and other lab studies.

Technical Accomplishments (1) Update cost model for utility energy storage

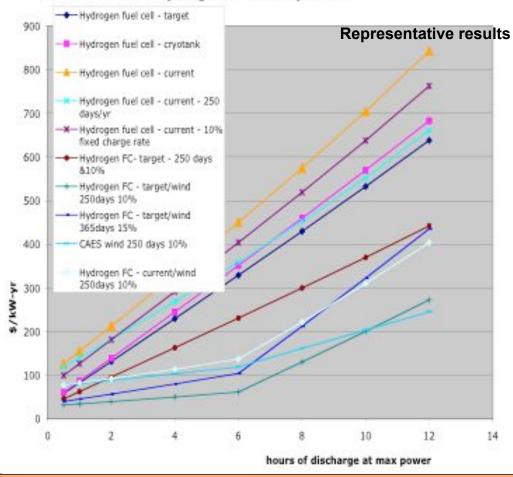


Model addresses storage system size and hours of operation

Technical Accomplishments (2) Update technology costs and compare

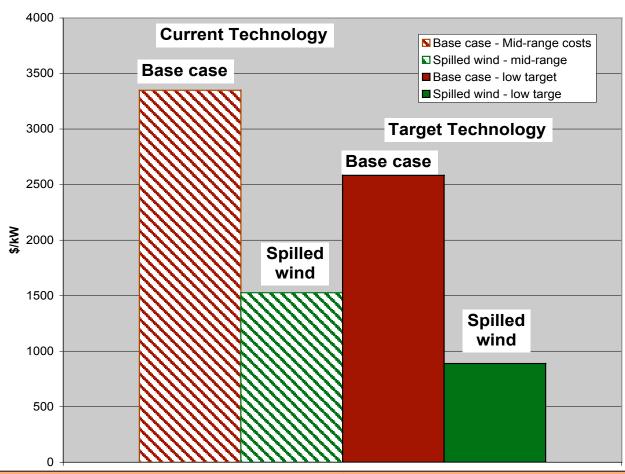

Annual cost of Bulk energy storage systems charged off-pe 20-yr systems operating 365 days/yr

Technical Accomplishments (3) Establish business case based on curtailed wind


Annual cost of Bulk energy storage systems charged with 6-hr free spilled wind power, 20-yr systems, 365 days/yı

Technical Accomplishments (4) Perform sensitivity analysis

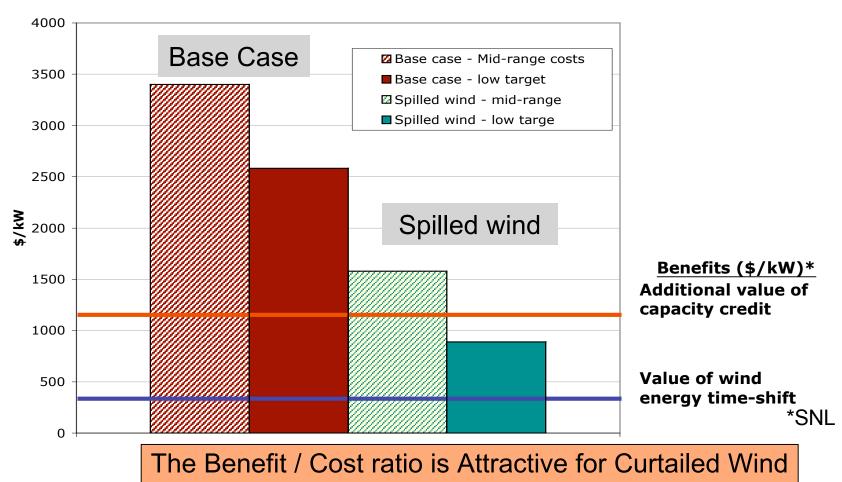
Annual cost for hydrogen fuel cell systems



Results are sensitive to operational & economic assumptions

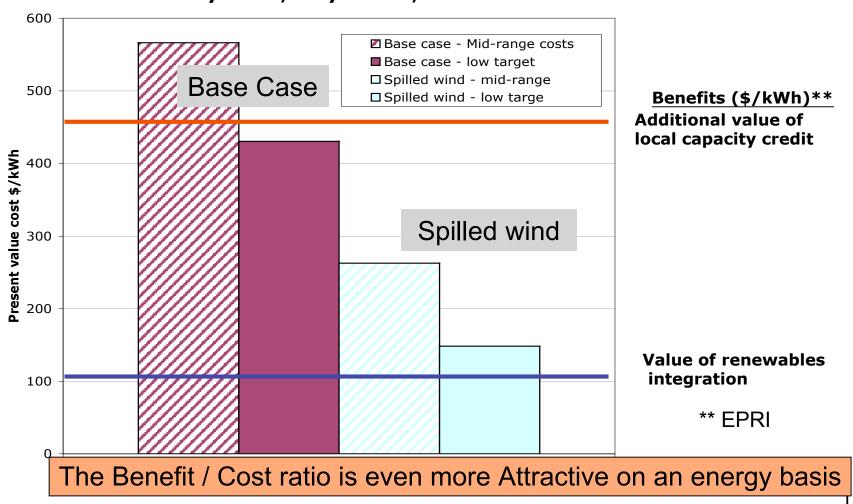
Technical Accomplishments (5) Perform sensitivity analysis for business case

Present value of 20 yr costs for 6-hr hydrogen storage system with wind



Hydrogen storage results are sensitive to current and target costs and applications

Technical Accomplishments (6) Benefit / cost analysis on \$/kW basis*


Present Value of Hydrogen System costs: 6-hr storage 20-year systems

Technical Accomplishments (7) Benefit / cost analysis on \$/kWh basis**

PV of hydrogen system costs: 6 hr systems, 20 year life, 10% interest

Business model / market analysis (In Progress)

Business Approach for Renewable Power Generation Through Hydrogen Energy Storage

Maui-Based Wind-to-Hydrogen for Off-Grid End-Users

18 January 2011

Comments in Response to: Request for Information

DE-FOA-0000429

Fuel Cell Technologies Early Market Opportunities

Area of Interest 2: Turnkey Project Approaches for Hydrogen Energy Storage for Renewable Power Generation

Prepared for:

Department of Energy Office of Energy Efficiency and Renewable Energy

Dr. Sunita Satyapal, Program Manager Mr. Peter Devlin, Market Transformation Team Lead

			(4)		Potential (MW, 10 Years)		Economy (\$Million) [†]	
#	Benefit Type	Low	High	CA	U.S.	CA	U.S.	
1	Electric Energy Time-shift	400	700	1,445	18,417	795	10,129	
2	Electric Supply Capacity	359	710	1,445	18,417	772	9,838	
3	Load Following	600	1,000	2,889	36,834	2,312	29,467	
4	Area Regulation	785	2,010	80	1,012	112	1,415	
5	Electric Supply Reserve Capacity	57	225	636	5,986	90	844	
6	Voltage Support	40	00	722	9,209	433	5,525	
7	Transmission Support	19	92	1,084	13,813	208	2,646	
8	Transmission Congestion Relief	31	141	2,889	36,834	248	3,168	
9.1	T&D Upgrade Deferral 50th percentile††	481	687	386	4,986	226	2,912	
9.2	T&D Upgrade Deferral 90th percentile††	759	1,079	77	997	71	916	
10	Substation On-site Power	1,800	3,000	20	250	47	600	
11	Time-of-use Energy Cost Management	1,2	226	5,038	64,228	6,177	78,743	
12	Demand Charge Management	51	32	2,519	32,111	1,466	18,695	
13	Electric Service Reliability	359	978	722	9,209	483	6,154	
14	Electric Service Power Quality	359	978	722	9,209	483	6,154	
15	Renewables Energy Time-shift	233	389	2,889	36,834	899	11,455	
16	Renewables Capacity Firming	709	915	2,889	36,834	2,346	29,909	
17.1	Wind Generation Grid Integration, Short Duration	500	1,000	181	2,302	135	1,727	
17.2	Wind Generation Grid Integration, Long Duration	100	782	1,445	18,417	637	8,122	

Matching the business model and market potential

Collaborations

- Sandia National Laboratories
 - Collaborator on geologic cost estimates
- Austin Energy
 - Utility company with excess wind resources informal advisor
- Schafer Corporation
 - Industry with industry clients needing innovative energy solutions informal partner
- Hydrogen Utility Group (HUG)
 - Reports to HTAC exchanging data on opportunities for grid storage, preparing hydrogen energy storage model
- Hydrogenics
 - Industrial provider of large-scale electrolyzers interested party

Utilities and industry are interested in this opportunity

Proposed Future Work

FY11

- Complete benefit / cost analysis; market potential framework
- Finish report

FY12

- Add scaling considerations to utility business model, considering spectrum of value propositions
- Add location considerations to cost and benefit analysis
- Build third-party (non-utility) opportunities business model
- Continue discussions and deliberations with commercial interests, market potential

Detailed considerations and discussions are needed

Summary

- Relevance: Market growth for hydrogen technology
- Approach: Benefit / cost analysis for hydrogen to enable penetration of dispatchable renewables
- Technical accomplishments
 - Model and database updates for cost analysis
 - Comparisons with other large-scale energy storage
 - Sensitivity, focusing on DOE target costs
 - Benefit / cost analysis of viable business case
 - Fostering commercial conversations
- Collaborations / contacts
 - Within the DOE fuel cell program: SNL, Hydrogen Utility Group
 - External / commercial contacts: Austin Energy, Schafer Corp., Hydrogenics, Ballard, Next Hydrogen, Nebraska Public Power
- Proposed future work: Additional real-world considerations for market development

This work is on schedule and meeting objectives

Technical Back-Up Slides

Capital Cost

Capital Cost = Cost of Power equipment + Cost of storage

$$Cost_{total}(\$) = Cost_{pcs}(\$) + [Cost_{storage}(\$) + Cost_{Bop}(\$)]$$

$$E_{storage}(kWh) = Power(kW) x time (hr)$$

$$Cost_{total}(\$) = [P(kW) \times Cost_{pcs}(\$/kW)] + [Cost_{storage+BOP}(\$/kWh) \times time (hr) \times Power(kW)]$$

$$Cost_{total}(\$/kW) = Cost_{pcs}(\$/kW) + Cost_{storage+BOP}(\$/kWh) x time (hr)$$

Total Cost = Cost of hydrogen tanks or reservoir + Cost of electrolyzer + cost of fuel cell + balance of plant

Annual Life-cycle and Present Value Costs

Levelized annual cost (\$/kw-yr)

- = Cost of capital (carrying charge on initial purchase)
- + cost of fixed O&M
- + cost of variable O&M
- + annualized replacement costs
- + consumables (fuel and electricity)

Business case parameters

Storage charging	6 hours
Storage discharging	Min 6 hrs
Cost of charging electricity	0.00 \$ / kWh for 6 hrs
Cost of charging electricity 0.05 \$ / kWh thereaf	
Days of operation per year	365
Cost of natural gas (for CAES)	5 \$/ BTU

Present Value Calculation:

$$PV = F_0 / (1+i)^0 + F_1 / (1+i)^1 + F_2 / (1+i)^2 + \dots + F_n / (1+i)^n$$

Economic parameters

System lifetime	20 years
Capital charge rate	15%
Discount rate	10%
Inflation rate	2%

Storage Benefits Analysis 122 West

SANDIA REPORT

SAND2010-0815 Unlimited Release Printed February 2010

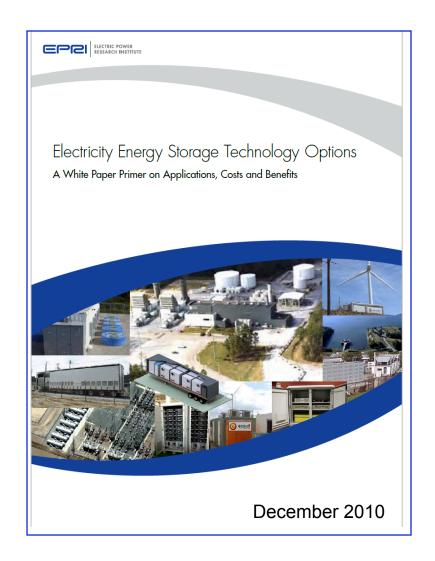
Energy Storage for the Electricity Grid: Benefits and Market Potential Assessment Guide

A Study for the DOE Energy Storage Systems Program

Jim Eyer

Garth Corey

Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550


Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Marin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

		Benefit (\$/kW)**	
#	Benefit Type	Low	High
1	Electric Energy Time-shift	400	700
2	Electric Supply Capacity	359	710
ń	Load Following	600	1,000
4	Area Regulation	785	2,010
5	Electric Supply Reserve Capacity	57	225
6	Voltage Support	400	
7	Transmission Support	192	
8	Transmission Congestion Relief	31	141
9.1	T&D Upgrade Deferral 50th percentile††	481	687
9.2	T&D Upgrade Deferral 90th percentile††	759	1,079
10	Substation On-site Power	1,800	3,000
11	Time-of-use Energy Cost Management	1,2	226
12	Demand Charge Management	582	
13	Electric Service Reliability	359	978
14	Electric Service Power Quality	359	978
15	Renewables Energy Time-shift	233	389
16	Renewables Capacity Firming	709	915
17.1	Wind Generation Grid Integration, Short Duration	500	1,000
17.2	Wind Generation Grid Integration, Long Duration	100	782

Storage Benefits Analysis 122 West

			PV \$/k	W-h	
Value Chain	Ben	efit	Target	High	
End User	1	Power Quality	19	96	
	2	Power Reliability	47	234	
	3	Retail TOU Energy Charges	377	1,887	
	4	Retail Demand Charges	142	708	
Distribution	5	Voltage Support	9	45	
	6	Defer Distribution Investment	157	783	
	7	Distribution Losses	3	15	
Transmission	8	VAR Support	4	22	
	9	Transmission Congestion	38	191	
	10	Transmission Access Charges	134	670	
	11	Defer Transmission Investment	414	2,068	
System	12	Local Capacity	350	1,750	
	13	System Capacity	44	220	
	14	Renewable Energy Integration	104	520	
ISO Markets	15	Fast Regulation (1 hr)	1,152	1,705	
	16	Regulation (1 hr)	514	761	
	17	Regulation (15 min)	4,084	6,845	
	18	Spinning Reserves	80	400	
	19	Non-Spinning Reserves	6	30	
	20	Black Start	28	140	
	21	Price Arbitrage	67	335	

Note: each benefit is modeled in isolation using a consistent battery configuration of capacity and 2 MWh of energy storage capacity, with a 15-year life and a 10% disco

Publications and Presentations

- Eyer and Schoenung, "A comprehensive survey of utility-related storage: value propositions and technology," Electric Utility Consultants, Inc., *Electricity Storage: Business and Policy Drivers* Conference, 24-25 January 2011, Houston, TX
- Schoenung, "Economic Analysis of Large-Scale Hydrogen Storage for Renewable Utility Applications," *International Colloquium on Environmentally Preferred Advanced Generation*, sponsored by the National Fuel Cell Research Center, 8-10 February, 2011, Costa Mesa,CA
- Schoenung, "Economic Analysis of Large-Scale Hydrogen Storage for Renewable Utility Applications," *International Conference on* Sustainable Energy Storage, 22-24 February, 2011, Belfast, UK
- SNL (SAND) Report in process

Presentations well received by industry, utility and academic communities

