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OverviewOverview
Timeline

• Project start date: FY05
• Project end date: FY09
• 20 % complete

Budget

• Expected total project funding:
– $3.00M (DOE)

• Funding received in FY05
– 200K (DOE)

• Funding for FY06:
– $400K (DOE)

Barriers
MYPP Section 3.3.4.2.1 On-Board 
Storage Barriers 
A. Weight & Volume
B. Cost
C. Efficiency
D. Durability/Operability
E. Charge/Discharge Rates
R. Regeneration Processes

Partners
• Coordinator of sub-team on aluminum hydride

- JPL, U. Hawaii, U. Nevada, Savannah
River, Sandia



3

ObjectivesObjectives
Understand the strengths/weaknesses of using AlH3 as a 
storage medium by quantifying the reaction kinetics, 
thermodynamics, and energy requirements for regeneration

Synthesis (FY05-06): Synthesize 3 polymorphs of AlH3 (α, β and γ)
with material capacities ≥ 8% kg-H2/kg (grav.) and ≥ 0.10 kg-H2/L (vol.)

Thermodynamics (FY06): Identify AlH3 polymorphs with suitable H2
pressures at temperatures near the operating temperature of a PEM 
fuel cell (~85° C)
Determine if AlH3 can be formed by direct high-pressure hydrogenation 
of Al powder at pressures <103 bar (Go/NoGo decision in FY06)

Kinetics (FY06): Identify AlH3 phases with decomposition kinetics that 
meet DOE hydrogen “full flow” target of 0.02(g/s)/kW at 85° C

Crystal Structures (FY06-07): Determine the crystallographic structure 
and atomic positions of β and γ AlH3 for future first-principles modeling
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ApproachApproach

Task 1: Synthesis (FY06 $200k - 50% complete for FY06)
- Prepare α, β and γ-AlH3
- Control particle size
- Preliminary regeneration studies

Task 2: Properties (FY06 $175k - 50% complete for FY06)
- Decomposition thermodynamics & phase transformations (DSC, XRD)
- Determine Isothermal decomposition rates of α, β & γ-AlH3

- Structural characterization of β and γ polymorphs
- Measure particle size & morphology  

• All AlH3 polymorphs have same stoichiometry, but different crystal 
structures and atomic positions. Therefore, they all have the same high 
capacity but different thermodynamic and kinetic properties
Approach: Synthesize and characterize AlH3 polymorphs and identify 
phases that meet or exceed DOE 2010 goals
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ApproachApproach
Task 3: Scale (1 kg) AlH3 Tank study (FY06 $0k)
- Stability/shelf life: determine rate of H2 evolution at <50 C
- Thermal management: packing density, thermal conductivity
- Safety/Energy/Cost Analysis

Task 4: theory & modeling (FY06 $0k)
- First principle AlH3 chemistry: supported by BES
- Refueling strategy

- on-board (high pressure hydrogenation)
- off-board (transfer of liquid/powder, tank swap, etc.)

Task 5: Collaborations & reporting
(FY06 $25k -50% complete for FY06)
- Partnerships and reporting: supplying partners with samples (e.g. AlH3)
- Materials characterization at unique BNL facilities (e.g.  National 
Synchrotron Light Source and the Center for Functional Nanomaterials) 
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Background: Aluminum HydrideBackground: Aluminum Hydride

•• High gravimetric and volumetric H capacity (volumetric capacityHigh gravimetric and volumetric H capacity (volumetric capacity is is 
greater than twice that of liquid hydrogen!)greater than twice that of liquid hydrogen!)
•• AlHAlH33 forms 7 different crystalline polymorphsforms 7 different crystalline polymorphs: : αα, , αα’’, , ββ, , γγ, , δδ, , εε, , ζζ

–– Low Low ΔΔH (H (ΔΔHHααAlH3AlH3 ≈≈7.6 kJ/mol H7.6 kJ/mol H22 (20% of  NaAlH(20% of  NaAlH44)) )) -- less heat less heat 
required for decompositionrequired for decomposition
•• Little is known about the other 6 AlHLittle is known about the other 6 AlH33 polymorphs polymorphs 
•• Refill likely performed offRefill likely performed off--board by chemical regenerationboard by chemical regeneration
-- AlHAlH33 currently synthesized by ethereal reaction of AlClcurrently synthesized by ethereal reaction of AlCl33+LiAlH+LiAlH44

AlHAlH33 Al + 2/3 HAl + 2/3 H22
CCgravgrav..= 10.1 wt% = 10.1 wt% (2010 S(2010 S--Target = 6.0)Target = 6.0)

CCvolvol =  149 g/L =  149 g/L (2010 S(2010 S--Target = 45)Target = 45)

–– αα--AlHAlH33 well characterized over past 30 yrs well characterized over past 30 yrs 
forms a metastable polymeric structureforms a metastable polymeric structure
–– αα--AlHAlH33 decomposes to Al metal and Hdecomposes to Al metal and H22 gas gas 
at T < 150at T < 150° CC
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Alkali Hydride Doping of Alkali Hydride Doping of αα--AlHAlH33

• FY05: Decomposition T of α-AlH3 (DOW Chem. Co.) decreased by 
~30°° C with alkali hydride and alanate catalysts

• Work completed in FY05 demonstrated optimal low T kinetics with 
10-20 mol% LiH

• This catalyst recipe will be applied to new AlH3 materials in FY06-07
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TPD Heating Rate = 2˚C/min +10%LiH
+10%NaH

+10%KH

AlH3

ΔΔTT = 30= 30°° CC

G. Sandrock, et al., Appl. Phys. A, 80 687 (2005)
G. Sandrock, et al., J. Alloys Comps, (2006)

T target
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Synthesis of AlHSynthesis of AlH33 PolymorphsPolymorphs

• Polymorphs prepared using 
organometallic synthesis

• Solvated AlH3, α-AlH3, β-AlH3
and γ-AlH3 synthesized at BNL

J. Graetz, et al., J. Phys. Chem. B, 109 22181 (2005)

3LiAlH4 + AlCl3 + ether

3LiCl + 4AlH3 + ether

4AlH3

Filter and dry

4AlH3•1.2[(C2H5)2O]

Dry w/ excess 
LiAlH4 at 60-70° C
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Reaction Pathway & Thermodynamics Reaction Pathway & Thermodynamics 
αα--AlHAlH33 →→ Al + 3/2 HAl + 3/2 H22

αα--AlHAlH33 (R(R--3c)3c)
Al metal (Al metal (fccfcc))

ΔΔHHff = = --9.9 kJ/mol AlH9.9 kJ/mol AlH33

• Heat flow measured during temperature ramp (10° C/min)
• Decomposition of α-AlH3 occurs in a single endothermic step

• ΔH = -9.9 kJ/mol AlH3
• Position of Al atoms do not change during decomposition
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• T~100° C γ and β-AlH3 undergo exothermic phase transition to α-AlH3
• T~160° C endothermic decomposition of α-AlH3 to Al + 3/2H2
• ΔHβ-α = 1.5±0.4 kJ/mol AlH3 and ΔHγ-α = 2.8±0.4 kJ/mol AlH3

Reaction Pathway & ThermodynamicsReaction Pathway & Thermodynamics

β-AlH3

α-AlH3

Al + 3/2H2

γ-AlH3

α-AlH3

Al + 3/2H2

J. Graetz, et al., J. Alloys. Comp. (2006)
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Reaction Pathway (Low T)Reaction Pathway (Low T)

- Peak at 4ppm (H2 gas) increases 
continuously at 23°C
- suggests some direct 
decomposition: γ-AlH3 → Al +3/2H2

- Double peaks (40 & 10ppm) suggest 
2 different Al positions in γ-AlH3

- Decrease in 40ppm at 23°C peak 
due to γ→α transition

Solid-state NMR of AlH3

• At low T (<100° C) 2 decomposition pathways were observed:
γ-AlH3 → Al +3/2H2 and γ-AlH3 → α-AlH3 → Al +3/2H2



Polymorph ΔH0 (kJ/mol AlH3) ΔH1(kJ/mol AlH3) ΔH (kJ/mol AlH3) ΔG (kJ/mol AlH3)
α-AlH3 - -9.9 ± 0.6 -9.9 ± 0.6 48.5 ± 0.6
β-AlH3 1.5 ± 0.4 -9.5 ± 0.6 -8.0 ± 1.0 50.5 ± 1.0
γ-AlH3 2.8 ± 0.4 -9.9 ± 0.6 -7.1 ± 0.4 51.4 ± 1.0

Summary of Reaction Pathways and Summary of Reaction Pathways and 
ThermodynamicsThermodynamics

αα--AlHAlH33 →→ Al + 3/2HAl + 3/2H22TT ≥≥ 4040°° CC

ββ--AlHAlH33 →→ αα--AlHAlH33 →→ Al + 3/2HAl + 3/2H22

TT << 100100°° CC →→ αα--AlHAlH33 →→ Al + 3/2HAl + 3/2H22
→→ Al + 3/2HAl + 3/2H22

ββ--AlHAlH33

12

γγ--AlHAlH33 →→ αα--AlHAlH33 →→ Al + 3/2HAl + 3/2H22

→→ αα--AlHAlH33 →→ Al + 3/2HAl + 3/2H22
→→ Al + 3/2HAl + 3/2H22

γγ--AlHAlH33

TT ≥≥ 100100°° CC

ΔH0 - enthalpy of exothermic peak (due to γ →→ α or β →→ α transition)
ΔH1 - enthalpy of endothermic peak (due to decomposition of α-AlH3) 
ΔH - total formation enthalpy (ΔH = ΔH0 + ΔH1)
ΔG - total Gibbs free energy (ΔG = ΔH-TΔS where ΔS ≈ 129 J/K mol H2)
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P298K = exp
ΔGf 298K

RT

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ 

Can we form AlHCan we form AlH33 directly from Hdirectly from H22 gas?gas?
•• Formation enthalpy from DSC measurements:Formation enthalpy from DSC measurements:

ΔΔHHff = = --9.9 9.9 ±± 0.6 kJ/mol AlH0.6 kJ/mol AlH33

•• Gibbs free energy of formation at 298 K:Gibbs free energy of formation at 298 K:

ΔΔGGff298K298K = 48.5 = 48.5 ±± 0.6 kJ/mol AlH0.6 kJ/mol AlH33

using using ΔΔSS298K298K ≈≈ 129 J/K mol129 J/K mol
•• HH22 equilibrium pressure calculated using:equilibrium pressure calculated using:
•• Giving an equilibrium pressure of:Giving an equilibrium pressure of:

PP298K298K ≈≈ 101055 barbar

•• Hydrogenation of spent Al requires HHydrogenation of spent Al requires H22 pressures > 10pressures > 1055 barbar
–– For comparison, decomposition of NaFor comparison, decomposition of Na33AlHAlH66 has a has a ΔΔH=47 kJ/mol and PH=47 kJ/mol and P150150°° CC ≈≈ 5 bar5 bar

•• ClaudyClaudy et al. predicted et al. predicted PP2323°°CC ≈≈101055 bar, but bar, but BaranowskiBaranowski et al. and et al. and 
KonovalovKonovalov et al. measured et al. measured PP300300°°CC ≈≈ 2.82.8××101044 barbar

No-Go on direct hydrogenation of Al powder
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• AlH3 polymorphs decomposed isothermally into vacuum (experiments performed 
with a back pressure (2 bar) showed similar results)

• T>100° C: Rates are similar for all 3 polymorphs
− γ and β phases transform to α phase prior to decomposition

• T<100° C: γ and β phases exhibit faster kinetics than α phase
– At least partial direct decomposition (e.g. no α transition, γ →→Al+H and Al+H and ββ →→Al+HAl+H)

Isothermal KineticsIsothermal Kinetics

J. Graetz, et al., J. Phys. Chem. B, 109 22181 (2005)

α-AlH3

ββ--AlHAlH33

γ-AlH3
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Temperature Controlled DecompositionTemperature Controlled Decomposition

• Reaction rate goes to zero as T is reduced to 23º C and returns to the 
same rate when T is increased back to 100º C (0.3 g/s for 100 kg AlH3)

• The full spectrum of H2 evolution rates (min-max) can likely be 
obtained with a variable temperature hydride where 23 ≤ T ≤ 110ºC

J. Graetz, et al., J. Phys. Chem. B, 109 22181 (2005)

α-AlH3
T = 100º C
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- Shape of fractional decomposition 
curves suggest kinetics are limited 
by nucleation & growth of Al phase

-H2 evolution rates determined from 
“acceleratory” region of  decomp. 
curve (90% of total)

- T≥100ºC rates similar for α, β and 
γ-AlH3, but γ and β phases 
decompose more rapidly <100ºC

Decomposition Rates for AlHDecomposition Rates for AlH33 PolymorphsPolymorphs

The 3 AlH3 polymorphs exhibit similar H2 evolution rates (0.1-0.3g/s) in the 
temperature range of interest (85º-100ºC). However, the γ and β polymorphs 
are much less stable at low T (≤ 60C). 

α-AlH3 exhibits low T stability with rapid H2 evolution at moderate T

120kW

36kW
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Future WorkFuture Work
Remainder FY06
• Kinetics - Preliminary studies on pure α, β and γ-AlH3 complete

– Low temperature (<60ºC) kinetic studies of α, β and γ-AlH3

– Identify and optimize additives (e.g. LiAlH4) and particle 
morphology to meet DOE full flow target 0.02(g/s)/kW at  85°° C

• Thermodynamics - TD studies on pure α, β and γ-AlH3 complete
• Crystal structures - synchrotron XRD acquired on α, β and γ phases 

ongoing effort with U. Hawaii and IFE (Norway)
• Regeneration - Complete literature search and environmental safety 

review for alane regeneration experiments proposed for FY07
• Collaboration with MHCoE Partners

– Lead the alane subgroup
– Provide samples SRNL, JPL, U.Nevada
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Proposed Future WorkProposed Future Work
• Regeneration (FY07-09)

– Direct high-pressure hydrogenation in “liquid” state: Reduce ΔG 
by lowering ΔS and ΔH during hydrogenation (Peq ~ exp[ΔG])

– Electrochemical charging - Savannah River National Lab
– Conventional organometallic synthesis (recycling) - starting with 

activated aluminum
• Scale (<1kg) AlH3 Tank Study - preliminary study of kinetics and 

thermal properties leading to a tank design study
– Stability and shelf life, thermal management, safety/energy/cost

• Theory and Refueling Models - First principle AlH3 chemistry (funded 
by BES) and Refueling strategy
– on-board (high pressure hydrogenation)
– off-board (transfer of liquid/powder, tank swap, etc.)

• Collaboration with MHCoE Partners
– Lead the alane subgroup
– Provide samples SRNL, JPL, U.Nevada
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Project SummaryProject Summary
Objective: Understand the strengths/weaknesses of using AlH3 as a storage 
medium by quantifying the reaction kinetics, thermodynamics, and energy 
requirements for regeneration
Approach: Synthesis, characterization & regeneration studies of AlH3

Accomplishments
– Synthesis: α, β and γ AlH3 synthesized at BNL with capacities 
approaching 10 wt% and 0.149 kg/L at T<100º C
– Thermodynamics: H2 equilibrium pressure ≥≥ 101055 barbar at 300 K; 
Decomposition pathways of α, β and γ delineated 
– Kinetics: 1.0 gH2/s (120 kW) at 112º C for α, β and γ-AlH3; Best low 
temperature (60º C)  stability with α-AlH3; Demonstrated that the full 
spectrum of H2 evolution rates can be obtained at T = 23-112ºC

Collaborations: Active partnerships with JPL, U. Hawaii, U. Nevada, SRNL 
and Sandia; IPHE collaboration with IFE, Norway 
Future Research: Regeneration of spent Al back to AlH3; Identify and 
optimize additives and particle morphology; scale tank studies
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Project SummaryProject Summary

Storage Parameter Units 2010 System
Target

FY05
materials*

FY06
materials*

Gravimetric Capacity kWh/kg
wt. % H2

2.0
6.0

2.5
7.5

3.17(3)
9.5(1)

Volumetric Capacity kWh/L
Kg H2/L

1.5
0.045

3.97x

0.119
4.75(4)x

0.143(2)
Desorption Temperature

ºC 85 105 <100

Desorption Rate**
85 ºC / 112 ºC

Power 85 ºC / 112 ºC
g/s/kW

kW
1.0**
120**

0.08 / 0.83
10 / 100

0.14(1) / 1.0(1)
17(2) / 120(12)

* Data is based on material only, not system value
** Based on 50kW FC with 45% efficiency for 100kg AlH3
x Does not account for packing density (a conservative 
estimate for packing density is 50%)



End of presentation
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