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OBJECTIVESOBJECTIVES

• Design, identify, and develop the 
knowledge base to enable proton 
exchange membrane films and related 
materials to be utilized in fuel cell 
applications, particularly for H2/Air 
systems at 120oC/low RH

Objectives
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McGrath Research Group: past and present

May 2006” DOE Contract on “High Temperature, 
Low Relative Humidity, Polymer-type 
Membranes Based on Disulfonated Poly(arylene 
ether) Block and Random Copolymers Optionally 
Incorporating Protonic Conducting Layered 
Water Insoluble Zirconium Fillers”

Acknowledgements
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• Thermally, hydrolytically, and oxidatively 
stable aromatic ionomers with high Tg, 
ductility, and controlled hydrophilicity are 
required

• Synthesis
–Linear and crosslinked statistical 

hydrophobic/hydrophilic copolymers (initially)
–Linear multiblock hydrophobic/hydrophilic 

copolymers (this project)

Research Approach/Hypothesis

M.A. Hickner, H. Ghassemi, Y.S. Kim and J.E. McGrath, Alternate Polymer Systems for 
Proton Exchange Membranes, Chemical Reviews (2004), 104(10), 4587-4611.
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Proton Exchange Membrane 
(PEM) Requirements

O2

Pt supported
on carbon with
polymer matrix

H2 H+
e-

H2O

Anode
Electrode

Cathode
Electrode

5 μm

e-

150 μm

H2O

H2O

H2O
H2O

H2O

Platinum (3-5nm)

Carbon Black (0.72μm)PEM

O2

Pt supported
on carbon with
polymer matrix

H2 H+
e-

H2O

Anode
Electrode

Cathode
Electrode

5 μm

e-

150 μm

H2O

H2O

H2O
H2O

H2O

Platinum (3-5nm)

Carbon Black (0.72μm)PEMPEM

• CRITICAL PEM PROPERTIES
– high protonic conductivity,

even at low RH
– low electronic conductivity
– low permeability to fuel and 

oxidants
– low water transport - diffusion 

and electro-osmotic drag
– oxidative and hydrolytic stability 

under acidic conditions, for 
thousands of hours!

– Good dry and wet mechanical 
properties at ambient and higher 
temperatures 

– Cost effective and able to be 
fabricated into robust membrane 
electrode assemblies (MEAs)

– Swelling-deswelling as a function 
of relative humidity.

M. Hickner, H. Ghassemi, Y. Kim ,B. Einsla and J E McGrath, Chem
Rev. 2004,104,4587-4611

Membrane Electrode Assembly (MEA)

The benchmark is Nafion™
for  the membrane  and electrodes
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OVERVIEW

Timeline
•Project State Date:  May 2006
•Project End Date:  May 2011
•Percent Complete:  20%

Barriers
•Conductivity at 120oC and low RH

Budget
Total Project Funding:   $1.5MM
Funding received in FY06: $150K
Funding for FY07:  $300K

Partners
•Los Alamos National Labs
•Giner Electrochemical Systems
•Hydrosize, Inc.
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How Can One Maintain Proton Conductivity 
Under Partially Hydrated Conditions?

Side chain structure allows for 
flexibility (low T relaxation), 
promoting mobility in the 
sulfonic acid domains.
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Nanophase Block copolymers 
permit transport via hydrophilic sequences

Nafion™

Roy, A.; Hickner, M.; Yu, X;  Li, Y; Glass, T.; Li, Y.; McGrath,
J.E. Journal of Polymer Science-Part B,44,2226-2239,(2006)
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Why Multiblock Copolymers?

Random copolymers have much lower 
conductivities at low RH than Nafion™.

The morphology of the copolymer 
membranes can be controlled by varying 
the two sequence lengths 

Generation of a co-continuous hydrophilic 
phase may allow improved conductivity at 
low humidity because of higher water 
diffusion coefficients

Multiblock systems allow use of high 
performance materials

*A. Noshay and J. E. McGrath, "Block Copolymers: Overview and Critical 
Survey," Academic Press, New York, January 1977, p.91., A stained S-B block 
copolymer
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Microphase Separation Happens When:

χN> (χN)ODT (for volume fraction f = 0.5, (χN)ODT =10.5)

χAB is the Flory-Huggins interaction parameter
It reflects the interaction energy between different blocks and 
provides the driving force for the phase separation
χAB usually varies inversely with temperature
χAB ---enthalpic contribution to free energy

N is the total degree of polymerization
Large N leads to translational and configurational entropy loss 
N --- entropic contribution to free energy

ΔG = ΔH-TΔS
A competition between interfacial tension and the entropic 
penalty for stretching of polymer chains
The product of χAB N is of interest but the parameter is 
unknown for ionic systems
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Highly Hydrophobic-Hydrophilic Multiblock 
Copolymers

A. Noshay and J. E. McGrath, "Block 
Copolymers: Overview and Critical 
Survey," Academic Press, New York, 
January 1977, p.91.an S-B diblock
copolymer

Hydrophilic segments, provides
Proton conductance

Hydrophobic segments, imparts 
mechanical integrity

• Nanophase-separated morphology may be 
precisely controlled through synthesis.

• Enhanced proton conductivity, water diffusion 
coefficient and mechanical strength are expected.

Our work:
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Yu, Xiang; Roy, Abhishek; Dunn, Stuart; Yang, Juan; McGrath, James E.  Synthesis and characterization of sulfonated-fluorinated, 
hydrophilic-hydrophobic multiblock copolymers for proton exchange membranes. Macromolecular Symposia (2006), 245/246(World Polymer 
Congress--MACRO 2006),  439-449.
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The number in the bar represents the hydration number 

Self-Diffusion Coefficient Values Support the 
Proton Conductivity Trends
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Multiblock Copolymers All Show 
Low x,y Swelling

BPSH 35 N112 NRE211 Multiblock
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Multiblock Copolymers (BPSH-PI) Develop Order and 
More “Free” Water as Block Length Increases
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Synthesis of BPSH – BPS Multiblock 
Copolymers

+

~~~~( Sulfonated Poly arylene ether sulfone)m~~(Poly arylene ether sulfone)n~~~~~

phenoxide terminated BPSH (Hydrophilic Block)

Decafluorobiphenyl terminated BPS (Hydrophobic Block)
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2. DMAc, K2CO3, 110 ºC, 48hr
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Effect of Temperature on Proton Conductivity for 
Unequal Block Lengths Copolymers (liquid water)
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Effect of RH on Proton Conductivity for 
Unequal Block Lengths Copolymers
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Proton Conductivity under partially hydrated 
conditions for BPSH multiblock at 80oC

20 30 40 50 60 70 80 90 100
1E-3

0.01

0.1

NRE211

N112

Pr
ot

on
 C

on
du

ct
iv

ity
 (m

S
/c

m
)

Relative Humidity (%)

 NRE211
 N112 (VT)
  BPSH-BPS (10-5) Giner Electrochem
 BPSH-BPS (10-5) VT



22

Proton transport at high temperatures for 
BPSH-BPS (10:5) multiblock
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Multiblock Copolymers Retain Much Higher Amount 
of Water at High Temperatures
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BPSH100-PI 15k-15k Morphology 
Appears Stable until 155°C
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BPS-BPSH100 5k-5k
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Nafion™ 112



27

Recast Nafion™ NRE211
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Conclusions
• Multiblock copolymers containing BPS hydrophilic blocks and 

highly fluorinated hydrophobic blocks were synthesized by 
coupling reactions of the telechelic oligomers.

• The BisSF-BPSH(x:y) multiblock copolymer series exhibits higher 
conductivity than Nafion™ 112 and the BPSH random 
copolymers at all temperatures in liquid water.

• Both in liquid water and under partially hydrated conditions, the 
proton conductivity increases with increasing block lengths.

• The self-diffusion coefficient of water dominates proton transport 
and is proportional to proton conductivity under partially hydrated 
conditions.
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Future Research
• Continue ongoing efforts understanding structure-

property relationships in PEM block copolymers  
and what controls conductivity at low RH

• Further Investigate BPSH-0-100 multiblock 
copolymers utilizing hexafluorobenzene and 
decafluorobiphenyl-linking groups.

• Swelling-deswelling features  in the block 
copolymers and its connection to fuel cell durability 

• Scale up (20-50gm) selected block copolymer 
PEMs, Cast into films 

• Screen compatibility with PVF2(Kynar); determine if 
lower modulus improves fatigue
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Appendix-Explanatory slides



31

How to Determine Swelling Ratio ?
(protocol)

• Sample equilibrated in water for 2 h
• Dimensions in x, y and z directions are 

measured by placing the membrane between 
two hydrophobic films.

• Dried in convection oven at 80oC for 2 h
• Change in dimensions are measured. 
• Average of 9 measurements involving 3 

different samples are taken 
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% Weight Loss vs Temperature for 
BPSH100-PI Series

• Weight loss continuously increases with temperature
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Derivative of % Weight Loss vs Temperature 
for BPSH100-PI Series

• Minima may correspond to transitions in phase separation at elevated temperature
• Slower heating rate might reveal trend more clearly for smaller block lengths

                  BPSH100-PI 5k-5k– – – –
                  BPSH100-PI 10k-10k––––– –
                  BPSH100-PI 15k-15k–––––––
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34

Conclusions
• Increasing block length appears to help retain 

morphology at elevated temperature
• Temperatures at which morphologies change 

appear to correspond to transitions in TGA 
curves; more study required

• Isothermal heating of BPSH100-PI series 
shows that while water loss increases with 
temperature, it does not change with time at 
120°C

• Block copolymer structures appear to retain 
water over time at 120°C
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