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Project Objective
Goals:
• Develop standardized testing and reporting protocols for PEC 

material/interfaces evaluation
• Publish the standardized PEC characterization techniques in a 

peer-reviewed journal to reach a maximum number of people

Purpose & Scope:
• Properly define the efficiencies (STH) that should be used for 

wide-scale reporting vs. efficiencies (IPCE) that are useful for 
scientific, diagnostic purposes only 

• Describe proper PEC procedures for characterizing planar 
photoelectrode materials

• Focus on single band gap absorber material only
• Describe the techniques, the knowledge gained, the 

experimental set-up and procedure, the data analysis, and the 
potential pitfalls/limitations
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Approach (Outline of a Paper)
A. Introduction – purpose & scope
B. Efficiency Definitions 
C. Experimental Set-up

1. Electrode preparation
2. Surface area determination
3. 3- and 2-electrode cell set up & connections
4. Catalyst surface treatments 
5. Spectral standard & calibration

D. PEC characterization flow chart
E. PEC techniques 

1. UV-Vis (Band gap)
2. Illuminated Open Circuit Potential (OCP)
3. Mott-Schottky (Vfb)
4. Dark, Light, & Chopped I-V
5. Photocurrent Onset
6. Incident Photon Conversion Efficiency (IPCE)
7. Photocurrent spectroscopy 
8. 2-electrode short current density and J-V (STH 

efficiency)
9. Hydrogen Detection (STH efficiency)
10. photocurrent density vs. time stability

F. Glossary of terminology
G. References

UV-Vis

OCP: Vfv

IPCE

2-electrode short-circuit J H2 Detection

Spectral 
standard & 
calibration

Electrode preparation
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Working Group (WG) Approach & Accomplishments

Date Task % Complete

05/2008 Formed Working Group & set purpose & 
scope

100%

07/2008 Completed first drafts of documents 100%

12/2008 Completed first review of documents via 
weekly telecoms/webcasts

100%

04/2009 Complete second review of documents 70%

05/2009 Complete external review of documents 10%
05/2009 Complete paper for submission to a 

peered review journal
80%

• Each member volunteered to write a number of documents
• WG reviews drafts weekly via webcast and telecom
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• Project start date: 5/6/08
• Project end date: 5/5/09 

(no-cost extension 
requested)

• Percent complete: (50%)

• Barriers addressed
– H. System Efficiency
– Lifetime
– Indirectly: G. Capital Cost

• Total project funding
– DOE share: $200k
– Contractor share: $50k

• Funding received in FY08: 
$200k

• Funding for FY09:
unknown

Timeline

Budget

Barriers

• Interactions/collaborations: 
DOE EERE PEC WG (HNEI, 
NREL, MVSystems, UCSB, 
Stanford), Berkeley Lab, HZB 
Berlin, U Würzburg

• Project lead: C. Heske

Partners

Overview



Activity Overview: Electronic 
and Chemical Properties of PEC 

candidate materials (Relevance)

To enhance understanding of PEC materials and 
interfaces and promote break-through discoveries:
• Utilize cutting-edge soft x-ray and electron 

spectroscopy characterization
• Develop and utilize novel characterization 

approaches (e.g., in-situ)
• Address materials performance, materials lifetime, and 

capital costs through intense collaboration within the 
PEC WG
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Research Activity (Approach)
• Overarching goal: compile experimental information 

about the electronic and chemical properties of the 
candidate materials produced within the PEC WG
– Determine status-quo (includes: find unexpected findings)
– Propose modifications (composition, process, …) to partners
– Monitor impact of implemented modifications

• Use a world-wide unique “tool chest” of experimental 
techniques

• Address all technical barriers related to electronic and 
chemical properties of the various candidate materials, 
in particular:
– Bulk and surface band gaps
– Energy-level alignment
– Chemical stability
– Impact of alloying/doping 14



Collaborations
(Relevance, Approach, & Collaborations)

• Collaborations are at the heart of our activities:
– Supply of samples
– Most important: supply of open questions, issues, challenges
– Interactive interpretation of results
– Joint discussion of potential modifications
– Involvement in implementing modifications

• Great collaboration partners in the PEC WG:
– U Hawaii (E. Miller et al.): WO3, W(X)O(Y)3, Cu(In,Ga)(S,Se)2

– NREL (M. Al-Jassim et al., J. Turner et al.): Zn(O,N), III-V-SC
– UC Santa Barbara (E. McFarland et al.): Fe2O3 et al.
– MVSystems (A. Madan et al.): SiC
– Stanford U (T. Jaramillo et al.): WS2, MoS2

– Open for more!
15



UV/Soft X-ray Spectroscopies (Approach)
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High dynamic range
XPS, UPS, Auger, IPES

High resolution
XPS, UPS, Auger

Sample preparation 
and distribution

Scanning Probe
Microscope

Glovebox
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X-ray EmissionIn-situ cell

Photoemission

U Würzburg
UNLV

SALSA: Solid And Liquid Spectroscopic Analysis
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Beamline 8.0 – Advanced Light Source – Lawrence Berkeley National Lab
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Requirements for PEC Materials
(Relevance)

• Chemical stability

• Optimized bulk band gap for photon 
absorption

• Optimized band edge positions at the 
relevant surfaces

• ... (e.g., cost!)
20



T. Bak et al., Int. J. of Hydrogen Energy 27, 991 (2002).
Original source: Chandra S. Photoelectrochemical solar cells. New York: Gordon and Breach, 1985. p. 98.

Band gap energy of different oxide materials and relative energies with respect
to vacuum level and normal hydrogen electrode level in electrolyte of pH = 2
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Electronic Surface 
Structure of WO3

(Accomplishments)
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• Combination of UPS and IPES:

• Valence band maximum

• Conduction band minimum

• Work function/vacuum level

• Complete electronic surface 
structure! 

• Experimentally!
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First all-experimental depiction of the WO3 surface 
electronic structure!

(Accomplishments, PD highlight 2008 Review)
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WO3 WO3:MoO3
(sample #341 B)

• Work function is (4.67 +/- 0.05) eV
• VBM = (-2.64 +/- 0.10) eV 
• CBM = (0.60 +/- 0.10) eV 
• Surface band gap = (3.24 +/- 0.15) eV

• Work function is (4.49 +/- 0.05) eV
• VBM = (-2.89 +/- 0.10) eV 
• CBM = (0.39 +/- 0.10) eV 
• Surface band gap = (3.28 +/- 0.15) eV

J. Phys. Chem. C 112, 3078 (2008)

Comparison: WO3 and WO3:MoO3
(Accomplishments)
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a-SiC band gaps: bulk band gap vs. surface band gap
(Accomplishments)

• XES/XAS (left) gives lower bound for the near-surface bulk band gap
• UPS/IPES (right) gives electronic band gap at the surface
• a-SiC band gaps are reported between 1.8 eV and 3.6 eV

(Ref: T. Ma et al., J. Appl. Phys. 88, 6408 (2000))

• Influence of oxygen and nitrogen: band gap widening
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ZnO:N – Chemical Composition and Stability
(Accomplishments)

APL94, 012110 (2009)

• Formation of ZnO:N with 
increasing N content as a 
function of RF sputter 
power

• Variation of Zn3N2/ZnO
ratio can be directly 
measured by XES

• 0 W – 120 W “well 
behaved”, 150 W not

• Valence band edge shifts 
due to N incorporation

Zn 3d → O 1s

Zn 3d →
Zn 2p1/2
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ZnO:N – Chemical Composition and Stability
(Accomplishments)

APL94, 012110 (2009)

• ZnO:N is instable under 
storage in air (reverting 
back to ZnO), but stable 
under storage in vacuum

• Effect is most 
pronounced for high N 
content
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Research Plan & Basis for 
Continuation of Research

(Proposed Future Work)
• Broaden the collaborations with our existing partners (HNEI, 

NREL, MVSystems, UCSB, Stanford) and bring new 
partners “on board”

• Determine electronic and chemical properties of various 
PEC candidate materials (see list on collaboration slide) and 
answer as many questions as possible

• Find unexpected things
• Continuously improve our currently available experimental 

approaches
• (Develop experimental in-situ capabilities)
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Summary (Relevance)

• Unprecedented insight into the electronic and chemical 
structure of PEC candidate materials from the DOE WG

• Portfolio of experimental techniques ranging from “standard” to 
“pushing the edge forward”

• Requires close collaboration with synthesis groups, theory 
groups, and other characterization groups

• Results will be as good as the questions we ask!

• Addresses materials performance, lifetime, and cost directly or 
indirectly through collaboration partners

30
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