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Overview

Timeline

= Start: 02/01/2007
= End: 06/30/2013
= Percent complete: 50%

Budget

= Total project funding: $3,076,186 DOE share: $2,396,949
Contractors share: ~ $679,237

= Funding received in FY10:  $350,000
= Funding for FY11: $350,000 planned

Barriers

= Hydrogen Production from Biomass Barriers
G. Efficiency of Gasification, Pyrolysis, and Reforming Technology
l. Impurities
N. Hydrogen Selectivity
O. Operating Temperature
P. Flux

= DOE Technical Targets
— $2-3/kg H, from biomass delivered target

— $1.60/kg H, from biomass without delivery
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Collaborations:

Partners

Arizona State University (Academic)- Ceramic membranes
(completed their efforts 2008)

National Energy Technology Laboratory (Federal)-
Metallic membranes

Schott North America Corporation (Industry)-Glass-ceramic
membranes

Wah Chang Company (Industry) - Membrane module design
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Relevance: Technical Targets: Dense Metallic

Membranes for Hydrogen Separation and Purification?

Performance Criteria Units 2006 Status | 2010 Target | 2015 Target
Flux Rate” scfh/ft’ >200 250 300
Module Cost (+ membrane material)® $/ft* of membrane | 1,500 1,000 <500
Durabilityd hr <8,760 26,280 >43,800
Operating Capability® psi 200 400 400-600
Hydrogen Recovery % 60 >80 >90
Hydrogen Quali‘tyf % of total (dry) 99.98 99.99 >99.99

gas

A Based on membrane water-gas shift reactor with syngas.

B Flux at 20 psi hydrogen partial pressure differential with a minimum permeate side total pressure of 15 psig, preferably >50 psi and 400°C.

C Although the cost of Pd does not present a significant cost barrier due to the small amount used, the equipment and labor associated with
depositing the material (Pd), welding the Pd support, rolling foils or drawing tubes account for the majority of membrane module costs.
The $1,500 cost status is based on emerging membrane manufacturing techniques achieved by our partners and is approximately $500
below commercially available units used in the microelectronics industry.

D Intervals between membrane replacements.

E Delta P operating capability is application dependent. There are many applications that may only require 400 psi or less. For coal
gasification 1000 psi is the target.

F It is understood that the resultant hydrogen quality must meet the rigorous hydrogen quality requirements as described in Appendix C.
These membranes are under development to achieve that quality. Membranes must also be tolerant to impurities.
This will be application specific. Common impurities include sulfur and carbon monoxide.
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Relevance: Project Objectives

Long-term goal:

Determine the technical and economic feasibility of
using the gasification membrane reactor to
produce hydrogen from biomass

Short-term goal:

Evaluation of synthesized metallic and glass
ceramic membranes to fabricate a module for
testing with a bench scale gasifier
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Approach: Scope of Work

Task 1. Membrane material development

= 1.1 Ceramic material synthesis & testing

= 1.2 Metallic material synthesis & testing

= 1.3 Composite membrane synthesis & testing

= 1.6 Optimization of selected candidate membranes

Task 2. Gasification membrane reactor process development and
economic analysis

Task 3. Bench-scale biomass gasifier modification

Task 4. Integrated testing of initial membrane with gasifier
= 4.1 Design of membrane module configuration

= 4.2 Membrane module fabrication

= 4.3 Testing of bench-scale membrane reactor

Task 5. Integrated testing of best candidate membrane with
gasifier

Task 6. Project Management and Reporting
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Approach: Milestones

Task Revised/

Planned Completed
1.4 Select Initial Candidate Membrane 3/15/08 6/30/08
1.5 Select Best Candidate Membrane 12/30/11
1.5 Develop Membrane with Flux of 125 SCFH/ft2 6/15/11
2.0 Process Development & Econ Analysis  9/30/10 10/07/10*

6/30/12

4.1 Membrane Module Design 6/30/10 9/17/10

2.0 Integrated Testing with Bench Gasifier 6/30/12

* Preliminary economic calculations indicate DOE Target can be met.
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Approach: Conventional Hydrogen Production from
Biomass Gasification and Biomass Gasifier with Close
Coupled Membrane
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Approach: GTI’s Fluidized Bed Gasifier RENUGAS®
Ideal for Membrane Gasification Reactor
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Approach: Potential Benefits of Membrane Reactor for
Hydrogen Production from Biomass

High H, production efficiency:

Thermodynamic analysis indicates potentially over 40%
improvement in H, production efficiency over the current
gasification technologies

Eliminate loss in PSA tail gas
More CO shift H,0+CO = CO,+H,
Reform CH, CH,+H,0 = CO+3H,

Low cost: _
reduce/eliminate downstream processing steps

Clean product:
no further conditioning needed, pure hydrogen

CO, sequestration ready:
S|mpl CO, capture process

Power co-generation:
utilization of non-permeable syngas
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Technical Accomplishments and Progress:
Membrane Module Design

* Planar design

*Copper gaskets coated by silicon
*Hastelloy C-276 body, porous
supports and additional
mechanical support

*Cement as intermetallic layer
*Distance between channels-
turbulent regime

1-base plate *An initial candidate- Pdg,Cu,, foil
2-clamping frame *Review of membrane module
3-copper gasket design by Wah Chang

4-slotted metal support *Potential Sites for Membrane
5-porous support Module: Auburn University and
6-membrane GTl's FFTF
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Technical Accomplishments and Progress:
Membrane Module Design- GTl and Wah Chang review
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Technical Accomplishments and Progress:
Metallic Membranes- GTI

TeTC

1o FFC  eTC  a8FC it EpE REC Advantages Disadvantages
/
. v Ta Pd-based Relatively high flux | Cost

1':' membranes | Catalytic activity Resistance to
. .x for H, dissociation | impurities issue
?;1 10 i
S Non-Pd High potential for Poorly catalytic
E . membrane H, flux Inexpensive | surface
2 109 | H,embrittlement
E . Fe
'Q Ly Potential remedies
E Engineered surface coatings

Alloying
10711 fﬁf‘é?{ dated
g Permeability at T=800-850°C
e PdCu PdTa PdAg (Pd:60-100%)

PdNi PdAu Pd-NiCu-Pd (Pd:0-55%)
Pd-Co-Pd Pd-NiFeCuMo-Pd
Pd-VNi-Pd

Pd-PdTi-Pd Pd-Ta-Pd
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Technical Accomplishments and Progress:
Membrane Performance in H, - NETL

Test of concept

NbSi, on Nb

Membrane
Test

ﬁ
700°C
100% H,
2 psi

Result: Failed quickly due to formation of brittle Nb hydride, but silicide coating
appears permeable to H,

*Five new Pd-Cu ternary alloys have been fabricated
Alloying elements selected for potential structural stabilizing effect and/or effect on
surface characteristics
Note: Membrane testing has been on hold due to relocation of testing facilities
to a new facility. Membrane testing is expected to restart by May 2011.
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Technical Accomplishments and Progress:
Metal-Glass-Ceramic Membranes- Schott
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Technical Accomplishments and Progress:
Process Optimization Strategy

*Syngas
composition *H,Flux @ T &P *Total process
*Yields from *Membrane area -Hea't and Mass Falar.ice
-Biomass, gasifier *Gas composition *Capital Cost Estimation
*Oxygen/air *Reformer from WGS *Cost balance
°T, P, et ield
°c UGAS® | Yees HYSYS® AspenPlus®
software software software

= UGAS® Process Model
* Yields from gasifier@ T & P
= Reformer yields (removes heavy (tar) components and increases H, concentration.)

= Hysys ® Model with Excel Spreadsheet
= Determines flux @ T & P (5 equal-area zones)
= Sizes membrane area for a fixed amount of H, recovery
= Determines gas composition from WGS (partial pressure driving force)

= Aspen Plus ® Model
= Determines total process heat and material balance
= Allows capital cost estimation from scaling
= Allows operating cost balance — steam and power generation from pinch analysis
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Technical Accomplishments and Progress:
Simplified Diagrams of Different Process Variations after
Biomass Gasification

Conventional Hydrogen Production Process
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Technical Accomplishments and Progress:
Process Simulation Basis
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Technical Accomplishments and Progress:
Process Flow Diagram
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Technical Accomplishments and Progress:
PSA and Closely-Coupled Membrane Cases

PSA case: P. Spath, A. Aden, T. Eggeman, M. Ringer, B. Wallace, and J. Jechura,

“Biomass to Hydrogen Production Detailed Design and Economics Utilizing
the Battelle Columbus Laboratory Indirectly-Heated Gasifier,”

NREL/TP-510-37408, May 2005

Closely-Coupled Membrane case:

Scaled from the Aspen model using economic bases from the PSA case:
The size bases for flow rates and heat duties for these calculations - Goal
Design process flow diagrams (Appendix D)

The capital cost bases for the scaling calculations - Goal Design Summary of

Individual Equipment Costs (Appendix |)
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Technical Accomplishments and Progress:
Preliminary Economic Analysis

S/kg
PSA Membrane
Case 6F 7F
Gasify T 1472 1472
WGST 1472 1382
Membrane thickness 5 5
Permeate p, bar 0.2 0.2
H2 Recovery 81% 100% 100%
Area M Adv 2442 2826
Wood 0.40 0.41 0.40
Oxygen 0.00 0.13 0.13
Power 0.05 -0.06 -0.04
Fuel 0.03 0.03 0.04
MTIO 0.10 0.10 0.10
Capital 0.38 0.39 0.38
Salaries+OH 0.07 0.08 0.08
Cat & Chem 0.10 0.06 0.06
Water 0.03 0.03 0.03
Total ex H2 compr. 1.169 1.184 1.172

Incl. H2 Compression

Power
MTIO
Capital
Total




Technical Accomplishments and Progress:
Membrane Economic Process Parameters

* Temperature Increase
+ Increases flux

= Decreases H, partial pressure with WGS

* Membrane Area Increase
+ Increases hydrogen recovery

= Increases capital cost

= Permeate Pressure Increase

= Decreases flux
+ Decreases compression cost

N gti



Technical Accomplishments and Progress:
Effect of Permeate Pressure, H, Recovery (Area)
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Technical Accomplishments and Progress:
Conclusions for Preliminary Economic Analysis

= Economic analysis verified the technology will meet the DOE cost
target of $1.60/kg H,, based on a feasibility study of the membrane
materials and the initial conceptual process design.

= Economic cost of hydrogen production via membrane is comparable
with PSA.

= Optimum permeate pressure is about 0.2 bar.

= Optimum membrane/ WGS temperature is at 1382°F (750°C) or
less.

= Optimum hydrogen recovery is at 100% of reformer product H,
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Proposed Future Work

» Continue to identify metal additives to enhance the catalytic activity, chemical and
mechanical stability of Pd-based alloys in the presence of sour-H, and investigate

coatings for non-Pd alloys - NETL and GTI
» Synthesis of Pd-containing glass-ceramic membranes - Schott

» Process Development and Economic Analysis for different downstream processes

after biomass gasification (“go/no-go” point) - GTI

» Fabrication of membrane module integrated with biomass reactor - GTI
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Summary

* Project was initiated again (February 2010) after 1
year hiatus.

= Continued development of metallic, glass-ceramic
membranes

= Continued process development and economic
analysis - Go/No Go decision point

= Membrane module design was completed.
Module capable of a flux rate of 80+ SCFH/ft?
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Technical Back-Up Slide




Technical Accomplishments and Progress:
Potential Sites for Membrane Module

Auburn University Gas Technology Institute-FFTF
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Technical Accomplishments and Progress:
Hysys ® Model
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Technical Accomplishments and Progress:
Aspen Plus ® Model

DRYER
CORYSEFP
DRYEIOM GASFD
GASIFY
COOLHZ
b L
o> TRANGGAS N -
REFORM
GAEIFOZ
o> GrvGEN eV AETOZ
FSPLIT
HTOZ
SPLOX
[vaPg] ARC3

FGCooL

----- -

POWWER1

AIRSPL

COMBAIR FGCO0LZ

QM BUST

POWERZ

LOCATR

FROG3

WATERP

FROC2




Technical Accomplishments and Progress:
Pinch Analysis
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Technical Accomplishments and Progress:
Utilities estimation

Power, kw

PSA 6F 7F
Feed handling & drying 742 742 742
Gasification, reforming 3636 1949 1883
Compression, S removal 26058 0 0
Shift, PSA 159 0 0
Membrane 0 0 0
H2 Compression final 4190 3827 3939
H2 Comp to 315 psi 18528 19066
Steam system 662 371 273
Power generation -29974 -31883 -30896
Cooling water 1152 368 198
Miscellaneous 3660 3660 3660
Total 10285 -2438 -1135
Total ex H2 comp 6095 -6265 -5074
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Technical Accomplishments and Progress:

Capital Cost Estimation by Scaling

1382 F, Case 7J (100% recovery at 300
psi), 0 .25 bar permeate

MMBtu/hr lb/hr 2005S$
Flue Exch 0.80 49622
Dryer 367437 19992961
$100 20042584
Reform exch 1 2.70 36652
Reform exch 2 168.20 2372426
Gasifier & blower 0.00 0
Renugas 24407784
Reform/ regen 100000 3636944
S200 30453806
Water cooler 0.90 32530
LOCAT heater 317507 7304
ZnO heater 51.59 0 194574
Syngas compr 0 0
Reformer blower 385441 96649
Sludge pump 997 20503
LOCAT vessel 0 0
Zno beds 0 0
Precomp KO 0 0
Postcomp KO 0 0
Sludge tank 21718 30608
S300 382168

Shift and PSA
Membrane
HT Shift

Comp intercool
Comp air cool
Comp H20 cool
H2 comp

H2 Comp (300psi)
Precomp KO

Post KO

S500

Blowdown cool
Water cooler
Boiler & pumps
S600

S700

Bldg & structure

Plant
Plant ex H2 comp

MMBtu/hr Ib/hr

3297
383018

12540 15096
15096
15096
15096
23726hp
15096
15096

144121
60000
144121

20055
0

23079000
1275459

143567
154334
50822
2508133
11024574
36283
37910
13955624

4690
15075
8810331
8830096
3621184

6368000

108 million
105 million




Advanced Inorganic Membranes for Biomass

Gasification Application
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Atomic transport dense
metallic membrane

Hydrogen at Hydrogen at
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