

Colorado School of Mines

Biomass Fuel Cell Systems

Primary Investigator: Associate Professor Neal P. Sullivan

Co-Investigators: Professors Robert Braun, Anthony M. Dean, Robert J. Kee, Ryan O'Hayre, Tyrone Vincent

> Colorado School of Mines Golden, Colorado, USA

> > May 15, 2012

Project ID: FC076

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Improve robustness of hydrocarbon- and biomass-fueled solid-oxide fuel cells and systems

Colorado School of Mines

CFCC

- Timeline
 - Project start date: 10/1/2009
 - Project end date: 9/30/2012
 - Percent complete: 85%
- Budget
 - Total project funding:
 - DOE Share: \$1,665,125
 - CSM Share: \$425,018
 - Funding received in FY11: \$0
 - Planned Funding for FY12: \$0
- Industrial Partners
 - CoorsTek, Inc. (Golden, CO)
 - Tubular SOFC supplier
 - Ceramic heat exchanger / fuel reformer
- Project Lead:
 - Colorado School of Mines

Barriers

- Durability
 - Broaden SOFC operating windows under hydrocarbon / biomass fuels

Performance

- Increase efficiency through system optimization / BoP integration
- Optimize fuel-processing strategies
 - Biogas fuels of anaerobic digesters
- Transient operation
 - Develop model-predictive control algorithms
- Balance-of-Plant costs
 - Integrate BoP components
 - Decrease BoP fabrication costs
 - Decrease BoP materials costs

Objectives / Relevance: Improve durability and performance of SOFC systems while lowering costs

CFCC

- Task 1: SOFC materials and architectures for robust operation
 - A. Integrate barrier-layer architecture into tubular SOFCs (completed)
 - B. Develop nickel-free, perovskite-based anode supports
- Task 2: Fuel processing of bio-derived fuels
 - A. Develop fuel-reforming strategies for biogas (completed)
 - B. Decrease cost of fuel-processing balance-of-plant hardware
 - Integrated ceramic microchannel heat exchangers / fuel reformer
- Task 3: Modeling and simulation
 - A. Develop chemically reacting flow models of fuel-processing hardware
 - Create design tools for microchannel heat exchanger / reformer
 - Utilize model-predictive control to integrate system hardware
 - Improve APU dynamic response, reduce supplementary-storage need
 - B. Conduct thermal modeling of hot-zone system components (completed)
 - C. System modeling: explore tradeoffs in biogas-processing approaches
 - Use of cyrogenic oxygen on-site at waste-water treatment facilities

Task 1 Approach: Develop materials and architectures to improve SOFC durability under biomass-derived fuels

CFCC

- A. Barrier-layer architecture in tubular SOFC geometries (completed)
 - Inert barrier layer within anode support to improve durability
 - Reduce gas-transport rates
 - Increase local steam concentration within anode-support structure
 - Promote internal reforming over carbon-deposit formation
 - ~ 1-kW APU target application tubular geometries for fast start-up
 - Milestone: 50-hrs continuous operation on hydrocarbons (100%)
 - 300 hours of trouble-free operation achieved
- B. Develop perovskite-based, next-generation tubular anode supports
 - Pros: perovskites more tolerant to sulfur, redox, and heavy hydrocarbons
 - Broaden the range of deposit-free SOFC operation
 - Cons: perovskite electro-catalytic activity lower than existing solutions
 - Utilize nickel-based anode function layer to promote internal reforming
 - Milestone: 50-hrs continuous operation on hydrocarbons (75%)

Task 1A Results: Barrier layers synthesized, integrated, and operated with CoorsTek tubular SOFCs (completed)

CFCC

- Tubular perovskite barrier layers synthesized
 - Sr_{0.8}La_{0.2}TiO₃ (SLT) materials
 - ~ 40% porosity
 - ~ 15 S / cm conductivity
- Integrated with CoorsTek SOFC
 - Traditional Ni-YSZ anode materials
 - Low-cost "reaction-sintering" fabrication
- > 12 days continuous operation demonstrated
 - Biogas fuel: 65% CH₄ / 35% CO₂
 - Current density: 0.1 0.2 A / cm²
 - Minimal degradation; no deposits observed
- Extending effort to perovskite-based SOFCs
 - SLT-based anode support
 - Ni-YSZ anode functional layer
 - Cell development ongoing

Ni-YSZ anode support Ni-mesh current collector

SLT barrier laver

Ag-mesh current collector LSM-YSZ cathode ~

YSZ electrolyte

Task 2A Approach: Develop biogas fuel processing strategies for SOFC integration (completed)

FCC

- Biogas fuels: anaerobic digesters at waste-water treatment facilities
 - Low-quality methane stream: 65% CH₄ / 35% CO₂
 - Requires clean-up of sulfur and siloxanes upstream of reformer & stack
 - Commercial clean-up technology exists (e.g. Xebec desiccant system)
 - Target MW-scale power generation
- Explore fuel-reforming options to convert biogas to syngas (H₂ + CO)
 - Catalytic partial oxidation (CPOX air and / or O₂)
 - Simplest approach, lower capital cost, but lower system efficiency
 - Utilize cryogenic O₂ on-site at waste-water treatment facilities
 - Steam reforming
 - Endothermic, high capital cost, but improved system efficiency
- Milestone: Complete analyses of biogas external-reforming (100%)
- Biomass-derived liquid fuels: butanol (C₄H₉OH)
 - Reduced effort at direction of 2010 DOE AMR reviewers
- Integrate with ceramic microchannel reactor technology
 - Increased effort at direction of 2010 DOE AMR reviewers

Task 2A Results: Kinetic models used to guide definition of external-reforming operating windows

7

- Reacting-flow model with multi-step elementary reaction chemistry
- Exercised across numerous reforming approaches
- Validated with experiments utilizing Rh on porous Al₂O₃ foam
 - High-temperature reforming enables conversion of CO₂ to CO
 - Kinetic models generally underpredict CO₂ conversion

Task 2A Results: SOFC electrochemical performance under reformed biogas can rival that of humidified H₂

- **Reformate fed to CoorsTek SOFC**
- **Electrochemical performance**
 - Current density at 800 °C
 - Cell potential = 0.65 V
 - Fuel utilization = 70 %
- Humidified H_2 : $P'' = 0.15 \text{ W} / \text{cm}^2$
- **CPOX-O**₂
 - 900 °C: P'' = 0.145 W / cm²
 - 600 °C: *P*" = 0.137 W / cm²
- Steam reforming
 - 1000 °C: *P*" = 0.137 W / cm²

System performance under study (Task 3C)

600 °C: P" = 0.125 W / cm²

Lower 0.04 0.00 H_2 CPOX CPOX CPOX CPOX O_2 O_2 Air Air 600°C 900°C 600°C 900°C

Task 2B Approach: Develop low-cost ceramic microchannel reactive heat exchangers for fuel reforming

FCC

Colorado School of Mines

Hot outlet

- Low-cost alumina materials
- Co-sintered layers: Single-body device
- Low-cost manufacturing

mm

Generation-5 design

100 mm

Task 2B Result: Performance of ceramic microchannel heat exchanger measured over a broad range

CFCC

Task 2B Result: Rhodium catalyst addition enables methane steam reforming with high conversion

- Rh catalyst on Ce-Al₂O₃ support
 - Washcoated onto reactive layers
- CH₄ conversion > 90%
- H₂ selectivity up to 70%
- 750 °C inert hot-inlet temperature

Task 3 Approach: Provide modeling support for Tasks 1 and 2 using CFD and chemically reacting-flow tools

CFCC

- Task 3A: Design tools for ceramic microchannel reactive heat exch.
 - ANSYS-FLUENT Computational Fluid Dynamics software
 - Flow through complex heat-exchanger channel geometries
 - CANTERA chemically reacting flow software
 - Open-source code under development at Sandia National Labs
 - Elementary chemical kinetics for fuel-reforming simulations
 - Two models integrated through FLUENT "User-Defined Functions" feature
 - Enables high-fidelity chemically reacting flow with high-fidelity CFD
- Task 3B: Model-predictive control for dynamic-load following
 - Map high-fidelity CANTERA model results to rapid low-order linear models
 - Apply to fuel-reformer hardware for dynamic control of pump and blower
- Task 3C: System-level modeling tools to advance thermal integration
 - Map ANSYS-FLUENT results to lower-order hot-zone thermal models
 - Utilize system tools to estimate benefits of thermal-integration strategies
 - Examine biogas fuel processing options

Task 3A Approach: CFD and chemically reacting-flow models integrated to provide HX-design guidance

FCC

- ANSYS-FLUENT software utilized for computational fluid dynamics
- CANTERA software developed for chemically reacting flow simulation
- Two models integrated in FLUENT "User-Defined Functions" feature
- Tight collaboration with developers at ANSYS / FLUENT

Task 3A Result: CFD modeling aids in optimizing backing-side conditions for reactive testing

Colorado School of Mines

- 182 simulations
- Low backing-side flow
 - Limited thermal energy input
 - Low reactive-side temp
- High backing-side flow
 - High localized velocities
 - Poor flow distribution
- Optimal backing-side flow
 - 45 SLPM, 800 °C
 - Reactive-side conditions:
 - 750 °C reactivesurface
 - Good SMR conditions
 - GHSV ~ 10 hr⁻¹

Average reactive-side surface temperature as a function of backing-side flow rate and temperature

14

Task 3A Result: Chemically reacting flow models guide operating setpoints for high CH₄ conversion

FCC

Colorado School of Mines

Methane mole fraction 33% **High-fidelity CFD** $CH_4 + H_2O$ inlet Elementary catalytic chemistry Syngas outlets Kinetic reaction mechanism for 13% heterogeneous reforming of CH₄ over Rh catalyst¹ $H_2 + Ni(s) + Ni(s) \rightarrow H(s) + H(s)$ $H(s) + H(s) \rightarrow Ni(s) + Ni(s) + H_2$ $O_2 + Ni(s) + Ni(s) \rightarrow O(s) + O(s)$ **Reactive-surface temperature** 657 °C $O(s) + O(s) \rightarrow Ni(s) + Ni(s) + O_2$ $CH_4 + Ni(s) \rightarrow CH_4(s)$ $CH_4(s) \rightarrow Ni(s) + CH_4$ $H_2O + Ni(s) \rightarrow H_2O(s)$ $H_2O(s) \rightarrow Ni(s) + H_2O$ $CO_2 + Ni(s) \rightarrow CO_2(s)$ $CO_2(s) \rightarrow Ni(s) + CO_2$ $CO + Ni(s) \rightarrow CO(s)$ 150 °C $CO(s) \rightarrow Ni(s) + CO$

Task 3B Approach: Extend high-fidelity chemically reacting flow models to model-predictive control

FCC

- Map high-fidelity CANTERA model results to rapid linear models
- The model-predictive controller (MPC) enables real-time optimization
 - Controller satisfies constraints on actuation and observables
 - Multiple-input--multiple output (MIMO) enables sensor fusion

Task 3B Result: Controller makes a complex set of decisions to meet load demand, satisfy constraints

CFCC

Task 3B Result: Controller makes a complex set of decisions to meet load demand, satisfy constraints

Task 3C Approach: System analysis of Metro Wastewater Reclamation Facility (Denver, CO, USA)

CFCC

- **Metro Wastewater Reclamation Facility**
- Wastewater Treatment Facility
 - One of nation's largest
 - 140 million gallons per day
 - 15.5 MW biogas generated
 - Feeds two combustion turbines
 - Nominal 6 MW electrical
 - Average only 4.5 MW_e
 - Fluctuating biogas flow
- Integrate SOFC system
 - ASPEN model components
 - SOFC stack
 - Biogas fuel processing
 - Siloxane removal
 - Fuel pre-reforming (~ 20%)
 - Tail-gas burner
 - Recuperator

Task 3C Result: Exergy analyses identify system inefficiencies

Industrial collaborations: CoorsTek Inc., Golden, CO

- Largest ceramics company in the United States
 - Recently acquired Ceramatec and St. Gobain
- Supplier of SOFCs and materials for use across multiple tasks
 - Task 1: Provider of baseline Ni-YSZ materials (task completed)
 - CSM develops barrier layers to extend range of SOFC operation
 - CSM compares Ni-YSZ to next-generation perovskite anodes
 - Task 2A: Supplier of tubular SOFCs (task completed)
 - CSM evaluates cell performance under bio-fuel reformate streams
 - Task 2B: Fabricate ceramic microchannel heat exchangers
 - CSM adds catalyst to reactive side of microchannel heat exchanger
 - CSM develops test protocol, evaluates performance of reactive HX
 - CSM develops computational modeling to provide design guidance

Future work

- Task 1B: Next-generation SOFC materials and architectures
 - Demonstrate operation of tubular perovskite-based solid-oxide fuel cell
 - Establish deposit-free operating windows under biogas fuel
- Task 2B: Reforming of biomass-derived fuels
 - Utilize ceramic microchannel reactor for biogas reforming
 - Modify microchannel design for improved conversion and selectivity
- Task 3: Modeling and simulation
 - Task 3A: Ceramic micro-channel reactive heat exchanger
 - Add metallic gas manifolding to FLUENT simulations
 - Improve model-to-experiment agreement
 - Explore alternate reactor designs and channel layouts
 - Task 3C: Model-predictive control of fuel-reforming BoP hardware
 - Develop control algorithms; validate using experimental facility
 - Task 3D: System-level modeling of Metro Wastewater Reclamation Facility
 - Explore system operation to optimize performance on biogas

Summary: CSM program is focused on improving system robustness, decreasing BoP costs

CFCC

- Relevance
 - Improve durability: advanced materials, improved control strategies
 - Decrease costs: Develop low-cost integrated reactive heat exchangers
- Approach
 - Create next-generation SOFC materials and architectures
 - Utilize microchannel-reactor technology for tight thermal integration
- Results
 - Demonstrated extended operation of first tubular barrier-layer SOFC
 - Explored unconventional biogas fuel-reforming strategies
 - Developed ceramic microchannel reactors for methane steam reforming
 - Utilized modeling tools for optimizing system operation
- Future work
 - Establish SOFC operation using perovskite anode-support materials
 - Extend microchannel-reactor technology to biogas fuel reforming
 - Explore system operation to optimize performance on biogas