

Biological Systems for Hydrogen Photoproduction

Maria L. Ghirardi, PI National Renewable Energy Laboratory

May 16, 2013

This presentation does not contain any proprietary, confidential, or otherwise restricted information NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: FY00
- Project end date: 9/30/2013*
- Percent complete: 85%
 *Project continuation and direction determined annually by DOE

Barriers

- Barriers addressed:
- Rate of H₂ production (AO)
- Oxygen Accumulation (AP)
- Targets:
 - Duration of production
 - Solar to H₂ (STH) energy conversion

Budget

- Total project funding: \$10,551K
- Funding received in FY12: \$600K
- Planned funding for FY13: \$480K

Partners (in FY12)

- Dr. Sergey Kosourov, Institute of Basic Biological Problems, RAS, Pushchino, Russia
- Dr. Eric Johnson, Johns Hopkins University

Relevance

Photobiological water splitting coupled to hydrogenase-mediated H_2 production has the potential to convert *about* **10% of incident solar energy** into H_2 . Various barriers have been identified as currently limiting green algal H_2 production, including:

- the O₂ sensitivity of the hydrogenase enzyme,
- the competition for reductant with CO₂ fixation and cyclic electron flow,
- the down-regulation of photosynthesis due to non-dissipation of the proton gradient and state transitions, and
- the low light-saturation of photosynthesis.

Objectives

• **General goal:** Develop photobiological systems for large-scale, low cost and efficient H₂ production from water (barriers AO and AP).

Technical Targets: Photolytic Biological Hydrogen Production					
Characteristics	Units	2012	2015	2020	Ultimate
		Status	Target	Target	Target
Duration of continuous H ₂	Time	N/A	30 min	4 h	8 h
production at full sunlight intensity	units				
Solar to H ₂ (STH) energy conversion	%	N/A	2	5	17
ratio					

• Specific tasks:

Task 1: Address the O_2 sensitivity of hydrogenases that prevent continuity of H_2 photoproduction under aerobic, high solar-to-hydrogen (STH) conversion efficiency conditions.

Task 2: Utilize a limited STH H_2 -producing method (sulfur deprivation) as a platform to address or test other factors limiting commercial algal H_2 photoproduction, including low rates due to biochemical and engineering mechanisms – *discontinued in FY13 due to budget restrictions*

Approach/Milestones – Task 1

Task 1: Address the O_2 sensitivity of hydrogenase by introducing the gene encoding for a hydrogenase from *Clostridium acetobutylicum* that is more O_2 -tolerant *in vitro* into the photosynthetic alga *Chlamydomonas reinhardtii*; measure its linkage to water oxidation and *in vivo* O_2 tolerance.

Dr. Paul King, NREL

Seth Noone, NREL

Task 1	FY12 Milestone	Due date	Status
3.3.5	Demonstrate expression of an active Ca1 in a C. reinhardtii		
	hydrogenase-less background and characterize O ₂ -sensitivity	9/30/12	Completed
	of light-driven H ₂ production (PsaD-Ca1 construct)		

	FY13 Milestones	Due date	Status
3.3.1-1	Re-test the H ₂ photoproduction activity of the PsaD-Ca1	12/12	Completed
	transformant strain 55 by the Clark electrode		
3.3.1-2	Screen 300 HYDA-Ca1transformants for the presence of the		
	Ca1 gene and test positive transformants for H ₂ production	2/13	Completed
	activity through the plate assay and Clark electrode		
3.3.1-3	Generate new transformants with 3 variations of added	4/13	On track
	introns from, respectively, RbcS2, HYDA1 and HYDA2		
3.3.1-4	Test at least 100 strains from the first generation of intron-		
	containing transformants for H ₂ -production activity through	5/13	On track
	the plate assay (contingent upon finding a new post-doc to		
	perform the work)		
3.3.1-5	Go/NoGo: if addition of introns increases the H ₂		
	photoproduction activity and stability of Ca1 by at least 3	7/13	On track
	times compared to HYDA1 of PsaD-based constructs, use the		
	strain for further improvements; if not, propose a new plan		
	for DOE's approval to re-direct the work (CPS Agreement		
	Milestone)		

Task 1 – Expression of the more O_2 -tolerant clostridial Ca1 hydrogenase in C. reinhardtii

Last year's Progress: A double hydrogenase knock-out mutant (-hydA1/hydA2) was isolated under BES funding and served as a host for expression of Cal hydrogenase gene behind the PsaD promoter (which requires light for optimal anaerobic induction).

psad prom Fd TP codon-optimized Ca1 (Geneart) psad term

Construct 1: psad promoter and terminator (constitutive expression) with ferredoxin transit peptide/Ca1 optimized by geneart.

hyda prom Fd TP codon-optimized Ca1 (Geneart) hyda term

Construct 2: native algal hydrogenase promoter and terminator with ferredoxin transit peptide/Ca1 optimized by geneart.

RT-PCR (mRNA)

Figure 1. PCR of genomic DNA from various Ca1transformants PCR (genomic DNA) hydrogenase was inserted into the Chlamydomonas genome and transcribed.

The clostridial

Light-dependent H₂ production was detected!

Task 1 – Expression of the more O_2 -tolerant clostridial Ca1 hydrogenase in *C. reinhardtii* and measurement of its O_2 tolerance - *completed FY12 milestone 3.3.5.*

Strain	Rate of H ₂ production in Clark electrode (μmol H ₂ mg Chl ⁻¹ h ⁻¹)	% WT
WT	260	100
Double knock-out	0.09	0.035
Double knock-	5.1	2
out/Ca1		

Strain 55 expressing Ca1 photoproduces H₂ at around 2% of WT rate

Ca1 activity is not lost upon subsequent cycles of illumination, suggesting higher tolerance to photosyntheticallyproduced O₂

Strain	Cycle of illumination	Rate of H ₂ production in Clark electrode (μmol H ₂ mg Chl ⁻¹ h ⁻¹)	Change in rate from 1 st light cycle
WT	1	269	N/A
	2	205	-23%
	3	179	-33%
Double knock-	1	5.1	N/A
out/Ca1	2	5.6	+10%
	3	6.2	+25%

Task 1 – Expression of the more O_2 -tolerant clostridial Ca1 hydrogenase in *C*. *reinhardtii* and measurement of its O_2 tolerance

However, GFP plate screen shows considerable heterogeneity of H₂ production levels among cells grown from a liquid culture of the Ca1-expressing transformant ...

PsaD-Ca1 Strain 55

... and activity is not stable over time if culture is serially propagated.

Task 1. Recover original high H₂-producing strain from plates and re-test it – *completion of milestone 3.3.1-1*

The strain shown as having the highest H_2 production in the previous slide, strain 55 was re-plated, retested by GFP, and showed more uniform H_2 production as shown above.

Task 1. Recover original high H₂-producing PsaD-Cal strain from plates and re-test – *completion of milestone 3.3.1-1*

Light-induced H_2 photoproduction by WT and the PsaD-Ca1 transformant were measured with a Clark electrode, following a 1-min dark incubation in the presence of different amounts of added O_2 . Relative rates are shown above.

Equivalent to exposure to atmospheric O_2 concentration = 15,600 μ M O_2 •s

Clark H₂-Production Rate versus μ M O₂•s were plotted, and the results fitted to a bi-exponential-decay curve, according to the equation below. The two inactivation rate constants, τ_1 and τ_2 , were estimated for WT and Ca1 cells.

$y = y_0 + A_1$	$e^{-x\tau_1} + A_2 e^{-x\tau_2}$	$x = \frac{(260 \mu\text{M}) (vol_{O_2 buf})}{vol_{total}}$	^{fer)} (Incuba	ution time,s)
Enzyme/ Strain	O_2 Inactivation $(\tau_1 \text{ and } \tau_2)$ Fast	n Rate Constants (μM O ₂ ⁻¹ •s ⁻¹) Slow	O ₂ Tol (Ratio Fast	erance to WT) Slow
WT	2.7 x 10 ⁻² ± 2 x 10 ⁻³	1.7 x 10 ⁻³ ± 5.2 x 10 ⁻⁴	NA	NA
PsaDP-Ca1	1.4 x 10 ⁻³	1 x 10 ⁻⁴ ± 2 x 10 ⁻⁵	19	17
HydAP-Ca1	3 x 10 ⁻³	3.5 x 10 ⁻⁴	9	5

Conclusions:

- In vivo expression of Ca1 in Chlamydomonas shows higher O₂ tolerance (5-19 fold) for photo-H₂ production than wildtype;
- Level of increased O₂ tolerance of Ca1 compared to HYDA1 in vivo is similar to differences of the purified enzymes measured in vitro.

Task 1. Screen 300 HYDA-Ca1transformants for the presence of the Ca1 gene and test positive transformants for H_2 production activity through the plate assay and Clark electrode – *completion of milestone 3.3.1-2*

High-throughput PCR screen identified additional transformants carrying the Ca1 gene out of a library of 300

C 11 12 13 14 15 16 17 18 19 20 C

Strain 28 showed heterogeneity (left) in GFP H₂ plate assay, and photoproduced H₂ at lower rates (right) compared to strains 55

1.4 -

Plating and GFP screening showed two H₂ producing transformants (17, 28)

Proposed Future Work

2013

Task 1 – Generate additional Ca1 expression constructs that contain Rubisco Small Subunit or HydA1 introns and test stability and levels of Ca1 activity by GFP plate assay and Clark Electrode; complete Go/NoGo milestone demonstrating at least 3X higher activity and stability of recombinant Ca1 expressed in the *C. reinhardtii* double knock-out background and characterize O_2 sensitivity of light-driven H₂ production.

Work beyond FY13: Start to genetically combine selected traits into a strain expressing the Ca1 hydrogenase. Develop photobioreactor systems for cyclic or continuous H_2 production based on current optimization of gas space composition (shown last year) and alginate immobilization.

Approach/Milestones – Task 2

Task 2: Utilize the limited STH sulfur-deprivation method to test (a) the rates of H_2 production by inducible ATP synthase mutants that are not limited by the non-dissipation of a proton gradient; and (b) the long-term performance of immobilized algal cultures. *Discontinued in FY13*

Task 2 – Demonstrate continuous H_2 production for 2 months (1440 hours) by sulfur-deprived, alginate-immobilized algae

Last year's results: alginate-immobilized algae photoproduce H_2 at higher specific rates and light conversion efficiencies than cultures in suspension upon sulfur deprivation, and they show higher tolerance to aerobic environments; cycles of +S/-S resulted in prolongation of H_2 production for an additional 6 cycles of about 500 hours each.

Prolonged H₂ photoproduction was demonstrated by cycles of +S/-S

Task 2: Demonstrate continuous operation of the sulfur deprivation process for a total of 2 months (1440 hours) upon addition of phosphate/sulfate using alginate-immobilized cultures – *completed FY12 milestone 3.3.3. by 9/30/12.*

Conclusions:

Time, hours

- H₂ production was observed for up to 3.75 months using the wild-type CC124 strain
- The rates of production declined to very low levels after about 10 days
- A different strain of Chlamydomonas, EJ12F3 showed higher rates of H₂ photoproduction during the first 50 days.
- The economics of the process depend on the trade-off between longer $\rm H_2$ production vs. lower rates

Collaborations

Partners (subcontractors) in FY12:

 Dr. Sergey Kosourov, Russian Academy of Sciences – applies sulfur deprivation to sulfur-immobilized *C. reinhardtii* cultures and tests their H₂production capabilities (Task 2).

- Dr. Eric Johnson, Johns Hopkins University – generates ATP synthase mutants, develops transformation protocols and transforms Chlamydomonas reinhardtii; tests physiological properties of transformants (Task 2).

Summary Slide

Relevance: Photobiological systems required only water, CO_2 and minerals for cultivation; if optimized to collect additional wavelengths of light, they will have the potential of converting 17% of the solar energy into H_2 at a cost competitive with gasoline.

Approach: NREL is expressing a more O_2 -tolerant bacterial hydrogenase in green algae and testing its *in vivo* tolerance to O_2 .

Technical Accomplishments and Progress:

1. Successfully expressed a more O_2 -tolerant, bacterial hydrogenase in a *Chlamydomonas* strain lacking native hydrogenase activity and detected more O_2 -tolerant photoproduction of H_2 *in vivo*.

Collaborations: none in FY13.

Proposed Future Research: Increase the recombinant hydrogenase activity and stability in Chlamydomonas; start combining different traits to generate a more efficient H₂-producing strain of Chlamydomonas.