

Fermentation and Electrohydrogenic Approaches to Hydrogen Production

2013 Annual Merit Review and Peer Evaluation Meeting; May 16, 2013

Pin-Ching Maness (PI; Presenter); National Renewable Energy Laboratory

Project ID #: PD038

Bruce Logan (Presenter); Penn State University

This presentation does not contain any proprietary, confidential, or otherwise restricted information

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

Overview

Timeline

- Project start date: FY05
- Project not funded in FY06
- Project end date: 10/2013*
- Percent complete: N/A

Budget

- Total project funding: \$2,720K (includes \$387K subcontract)
- Funding received in FY12: \$350K
- Planned funding for FY13: \$410K

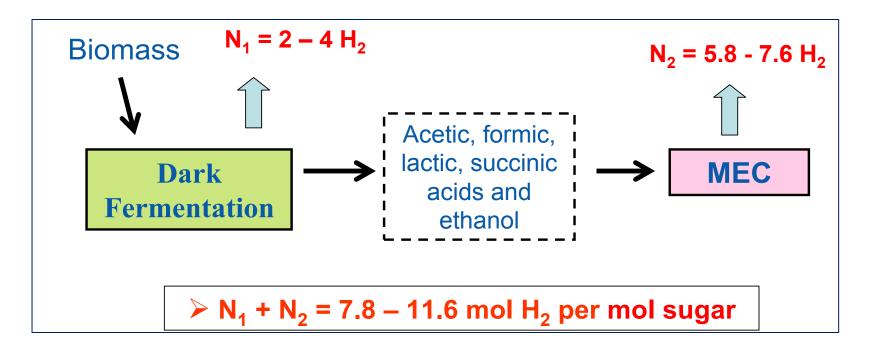
Barriers

Barriers addressed

- H₂ molar yield (AX)
- Feedstock cost (AY)
- System engineering (AZ)

Partners

- Dr. Bruce Logan
 Pennsylvania State University
- Drs. David Levin and Richard Sparling, University of Manitoba, Canada


*Project continuation and direction determined annually by DOE

Objectives/Relevance

Project Overview

Objective: Develop <u>direct</u> fermentation technologies to convert renewable lignocellulosic biomass resources to H_2 .

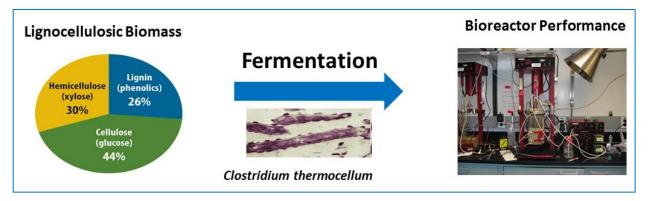
Integrating fermentation with MEC dramatically improves combined H₂ molar yield while reducing fermentation waste.

• MEC: microbial electrolysis cell; N₁ and N₂: H₂ molar yield (mol H₂/mol hexose).

Relevance

- **Relevance:** The project addresses directly two DOE barriers (feedstock cost and H_2 molar yield) aimed at improving the techno-economic feasibility of H_2 production via biomass fermentation.
- Task 1. Bioreactor Performance: Use cellulose (in lieu of sugars) and optimize parameters in sequencing fed-batch bioreactor to lower feedstock cost (Barrier AY).
- Task 2. Metabolic Engineering: Develop genetic tools to block competing pathways aimed at improving H₂ molar yield (Barrier AX).
- Task 3. Electrochemically Assisted Microbial Fermentation: Integrate microbial electrolysis cell (MEC) reactor with fermentation to improve H₂ molar yield (Barrier AX).

Technical Targets


Characteristics	Units	2011 Status	2015 Target	2020 Target
Feedstock cost ^a	Cents/lb sugar	13.5	10	8
Yield of H ₂ production from glucose	Mol H ₂ /mol glucose	3.2 ^b	4	6
MEC production rate	L-H ₂ /L-reactor-day	-	1	4

- a. Status and target of the DOE Bioenergy Technology Office (formerly Office of the Biomass Program).
- b. Low carbon substrate loading (1 g/L) led to high H₂ molar yield.

Approach/Milestone

Task 1: Bioreactor Performance

• **Approach:** Optimize bioreactor in sequencing fed-batch mode by testing parameters such as cellulose loadings, hydraulic retention time, and liquid volume replacement and frequency using the cellulose-degrading bacterium *Clostridium thermocellum*.

Lauren Magnusson

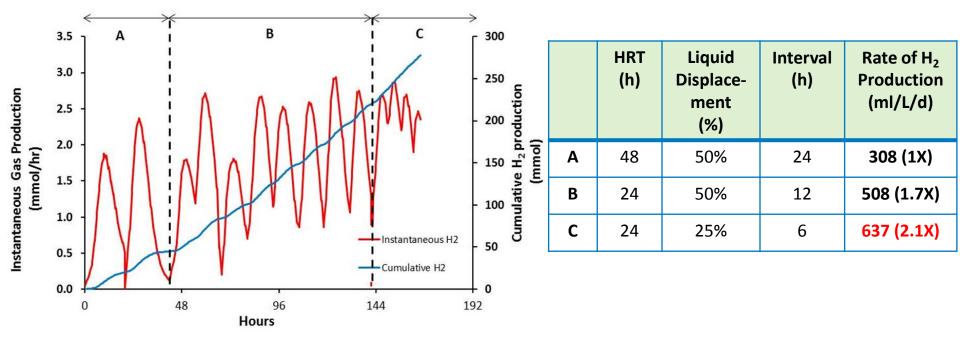
	Milestone	Completion Date	Status
3.2.1-1	Design and build a feed tank capable of delivering a constant concentration of cellulose over the course of fermentation under variable volume conditions. A successful design will be defined by a standard deviation of less than 10%, evaluated by dry weight of cellulose exiting the vessel.	1/13	Completed
3.2.1-2	In order to demonstrate feasibility of H ₂ production from biomass, improve H ₂ molar yield by 20% compared to the current baseline (1.1 mol H ₂ /mol hexose at 5 g/L/day cellulose feeding) by decreasing hydraulic retention time from 48 hr to 12-24 hr with more frequent liquid replacement using a constant cellulose loading of 5 g/L/day (<i>CPS Agreement Milestone</i>)	5/13	On track

Task 1 – Technical Accomplishments

Scale Up "Automated" Sequencing Fed-Batch Bioreactor

- Automation features: Fermentation module executes the Feed, React, Settle, and Decant stages in a 5-liter bioreactor (2-liter working volume).
- New <u>feed-tank</u> design (impeller, high RPM) affords better stirring and reliable cellulose delivery.

Feed, React, Settle, Decant


Cellulose settling retained acclimated microbes

C. thermocellum are attached to cellulose, hence allowing the bulk of the growth medium to be replenished while retaining the fully acclimated microbes.

Task 1 – Technical Accomplishments

Increased Rate of H₂ Production by Two-fold

- Cellulose loading at 2.5 g/L/day with varying hydraulic retention time (HRT) and amount and frequency of liquid medium replacement.
- HRT: the length of time to replace the working volume (2 L) in a bioreactor.

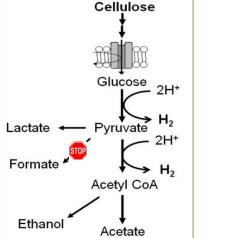
- New feed-tank design delivered consistent amount of cellulose, resulting in <10% variations in H_2 production in each feeding cycle (completed Milestone 3.2.1-1).
- Increased rate of H₂ production by >2 fold with shorter HRT and more frequent liquid medium replacement.

Task 1 – Technical Accomplishments

Increased Hydrogen Molar Yield by 53%

• Cellulose loading at 5 g/L/day with varying HRT and amount and frequency of liquid medium replacement.

HRT (h)	Liquid Displacement (%)	Interval (h)	H ₂ Molar Yield (mol H ₂ /mol hexose)	Rate of H ₂ Production (ml/L/d)
48	75%	36	0.79 (1X)	764.6 (1x)
48	25%	12	1.09 (1.38X)	1057 (1.38X)
12	50%	6	1.21 (1.53X)	1179 (1.54X)

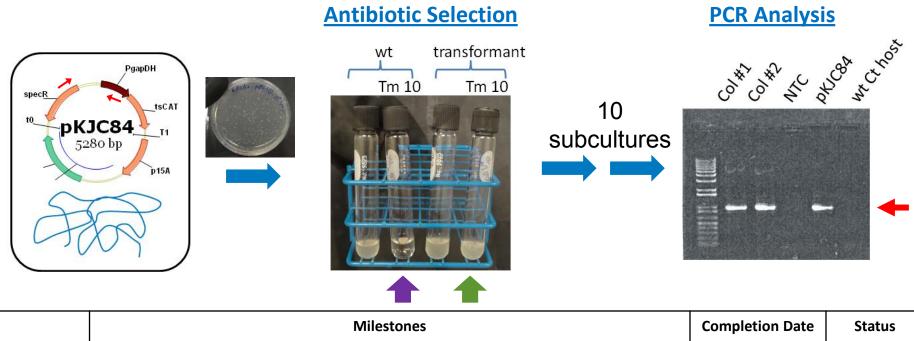

- Increased both H₂ molar yield (by 53%) and the rate of H₂ production (by 54%; by 3.8-fold if compared to rate in the previous slide).
- At fixed HRT, more frequent liquid replacement (interval) is key to improvement.
- HRT of 12-24 h may be more optimal since shorter HRT increases water usage.

	Milestone	Completion Date	Status
3.2.1-2	Improve H_2 molar yield by 20% compared to the current baseline (1.1 mol H_2 /mol hexose at 5 g/L/day cellulose feeding) by decreasing HRT from 48 hr to 12-24 hr with more frequent liquid replacement (<i>CPS Agreement Milestone</i>)	5/13	On Track

Approach/Milestone

Task 2 – Develop Genetic Methods for Metabolic Engineering

 Approach: Redirect metabolic pathways to improve H₂ molar yield via the development of genetic methods. The immediate goal is to delete the pyruvate-to-formate step.

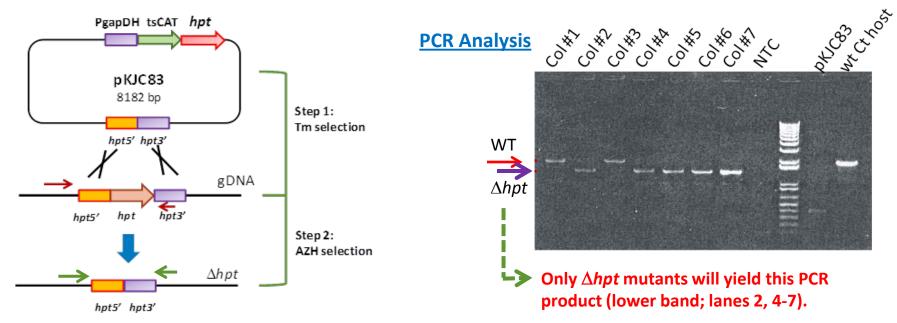


Katherine Chou

	Milestones	Completion Date	Status
3.2.2 (FY12)	Produce at least one plasmid for future use in knock-out strain production and other genetic manipulations, and demonstrate successful transformation into <i>C. thermocellum</i> via electroporation, with plasmid transfer confirmed by antibiotic selection and PCR (CPS Agreement Milestone 51458)	9/12	Completed
3.2.2-1 (FY13)	Produce a <i>C. thermocellum</i> mutant lacking its <i>hpt</i> gene to serve as the host for metabolic pathway mutant	4/13	Completed
3.2.2-2 (FY13)	Use Δhpt mutant as the platform strain to further knockout the pyruvate-to-formate competing pathways. This approach aims at increasing H ₂ molar yield by redirecting resources such as carbon and electrons towards H ₂ production by reducing side-products production.	9/13	Completed

Task 2 – Technical Accomplishments Generated a Stable Plasmid for Genetic Transformation

- NREL developed proprietary plasmid and stably transformed *C. thermocellum*.
 - We are one of the only two labs we know of that can transform *C. thermocellum*.
- PCR analysis verified presence of the plasmid (red arrow) which conferred growth in the antibiotic thiamphenicol (Tm, 10 μ g/ml) (green arrow) whereas wild type (WT) cannot.

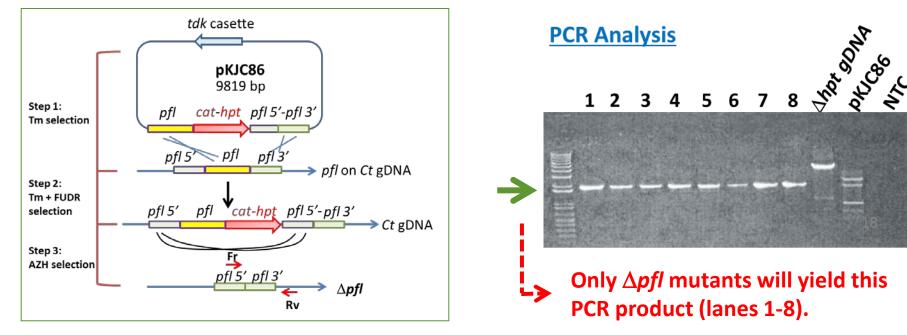


	Milestones	Completion Date	Status
3.2.2 (FY12)	Produce at least one plasmid for future use in knock-out strain production and other genetic manipulations, and demonstrate successful transformation into <i>C. thermocellum</i> via electroporation, with plasmid transfer confirmed by antibiotic selection and PCR analysis (CPS Agreement Milestone)	9/12	Completed

Task 2 – Technical Accomplishments

Generated Five hpt Knockout Mutants using Proprietary pKJC83 Plasmid

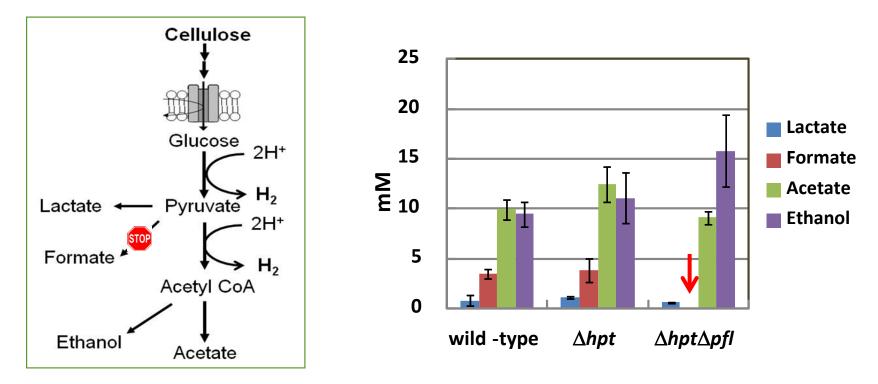
- *hpt* encodes hypoxanthine phosphoribosyl transferase, which converts AZH (8-azahypoxanthine) to a toxic product that kills the wild-type cells.
- Δhpt mutants survive in AZH, which forms the basis for a Δhpt counter-selection strategy.
- Five Δhpt mutants were verified by PCR (purple arrow, right figure) and DNA sequencing.
- Δhpt mutant will serve as the host to generate metabolic pathway mutants.


	Milestone	Completion Date	Status
3.2.2-1 (FY13)	Produce a <i>C. thermocellum</i> mutant lacking its <i>hpt</i> gene to serve as the host for metabolic pathway mutant	4/13	Completed

Task 2 – Technical Accomplishments

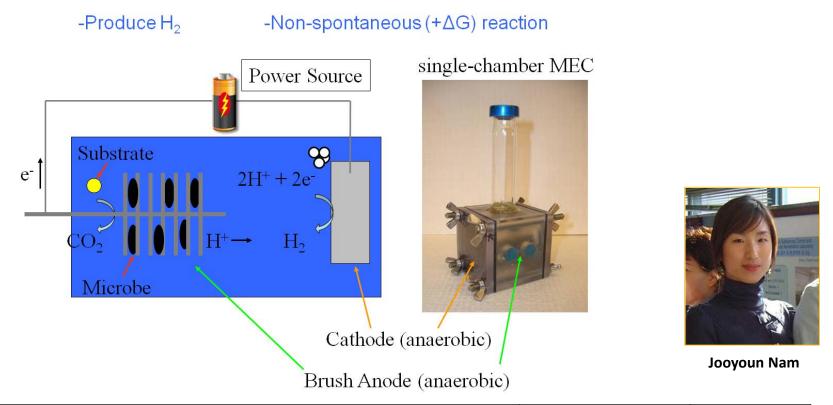
Generated Eight Pyruvate-to-formate (PFL) Pathway Mutants

Generated **eight** Δpfl mutants, verified by PCR using Δhpt mutant as the host (green arrow in the right figure).


 pKJC86 plasmid design included both *hpt* and *tdk* (thymidine kinase) genes. *tdk* leads to toxicity in fluoro-deoxyuracil (FUDR) – a double selection strategy (combining with AZH).

	Milestone	Completion Date	Status
3.2.2-2 (FY13)	Use Δhp t mutant as the platform strain to further knockout the pyruvate-to-formate competing pathways aims at increasing H ₂ molar yield by redirecting carbon and electrons toward H ₂ production.	9/13	Completed

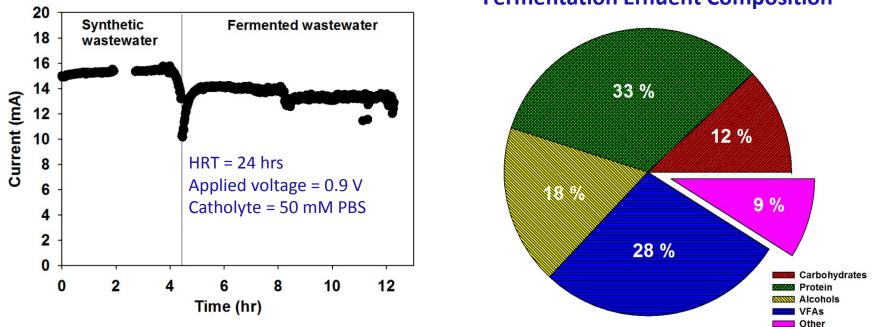
Task 2 – Technical Accomplishments Confirmed △*Pfl* mutant by Metabolite Analysis


- Δpfl mutant did not produce formate as expected based on deletion of pfl gene encoding the pyruvate-to-formate pathway.
- Δpfl mutant produced ~ 60% more ethanol than the parent strains.
- Knocking out the ethanol pathway may increase H₂ molar yield in future experiments since both pathways compete for the reductant NAD(P)H.

Work is underway to determine H_2 production from various strains in bioreactors.

Approach/Milestone

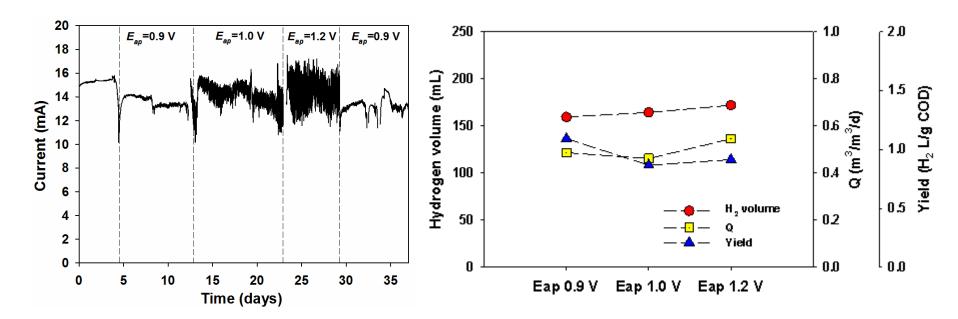
Task 3 – Electrochemically Assisted Microbial Fermentation



	Milestones	Completion Date	Status
3.2.3 (FY12)	Correlate removal of the subcomponents of the NREL fermentation effluent with current density and H ₂ production	9/12	Completed
3.2.3-1 (FY13)	Build prototype MREC reactor and evaluate H ₂ production using NREL fermentation effluent with zero electrical grid energy; demonstrate production rate of <u>></u> 0.5 L H ₂ L ⁻¹ reactor day ⁻¹ over 3 hydraulic retention times with continuous flow	9/13	On Track

Task 3.1 – Technical Accomplishments

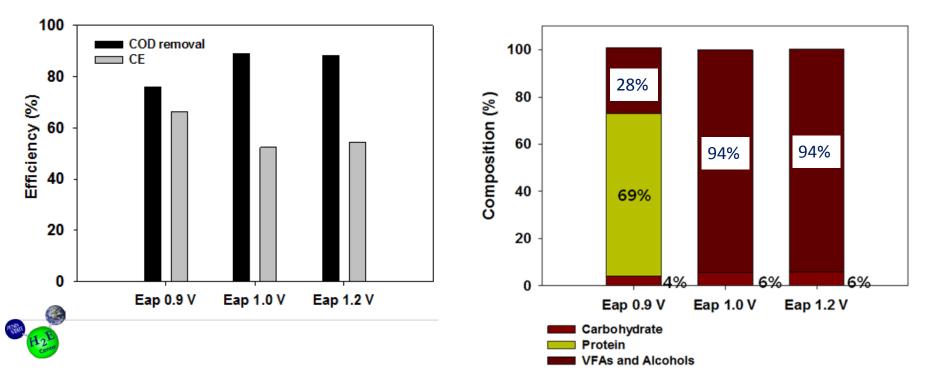
Hydrogen Generation from Fermentation Wastewater



Fermentation Effluent Composition

- Lower performance with fermentation wastewater (ww) due to substrate complexity
- **Current**: Synthetic ww = 51 A/m³; Fermented ww = 44 A/m³ (no protein in synthetic ww).
- **COD (chemical oxygen demand) removal**: Synthetic ww = 87%; Fermented ww = 73%.
- **Gas volume**: Synthetic = 183 mL; Fermented = 159 mL
- Gas production rates: Synthetic, 0.6 L-H₂ L⁻¹ d⁻¹; Fermented, 0.5 L-H₂ L⁻¹ d⁻¹.
- Protein removal (48%) was lower than alcohols and VFAs (>90%) and carbohydrate (89%).

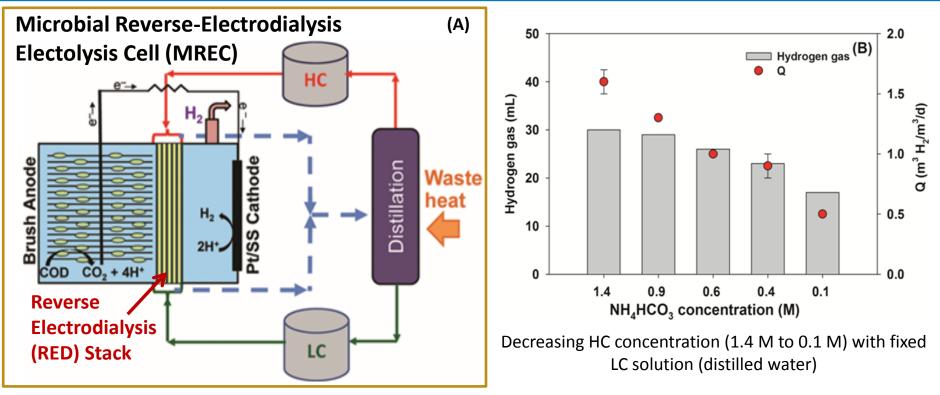
Task 3.2 & 3.3 – Technical Accomplishments


Different Applied Voltages, Gas Production Rates

- Higher applied voltages resulted in more positive anode potentials which reduces performance
 - $(P_{An} = -429 \pm 4 \text{ mV} \text{ at } E_{ap} = 0.9 \text{ V}, P_{An} = -338 \pm 38 \text{ mV} \text{ at } E_{ap} = 1.0 \text{ V}, \text{ and } P_{An} = -113 \pm 38 \text{ mV} \text{ at } E_{ap} = 1.2 \text{ V}).$
 - Cathode potentials relatively constant (from –997 to –1031 mV).
- Current fluctuated at $E_{ap} = \ge 1.0$ V. Likely due to substrate depletion near the reactor outlet
- Energy recovery based on electrical energy added and hydrogen gas recovered (η_E =223%) was highest at E_{ap} =0.9 V; overall energy recovery that includes the substrates (η_{E+S}) was 64%.
- More hydrogen gas was generated at increased applied voltages, but H_2 yields were lower. Highest H_2 yield was 1.1 H_2 L/g COD at E_{ap} = 0.9 V.

Task 3 – Technical Accomplishments

Removal of Subcomponents in Effluent at Different Applied Voltages



- Higher applied voltages increased COD removal, but lowered coulombic efficiencies (CE).
- Protein was almost completely removed at the higher applied voltages.
- As CEs were lower at higher applied voltage, degraded protein seemed to be used more for cell growth than electricity generation.

	Milestone	Completion Date	Status
3.2.3 (FY12)	Correlate removal of the subcomponents of the NREL fermentation effluent with current density and H ₂ production	9/12	Completed

Task 3 – Technical Accomplishments

Hydrogen Generation in an MREC – No External Power Source

- **Power source (A)**: RED stack using high concentration (HC) and low concentrations (LC) of Ammonium bicarbonate, NH₄HCO₃, which can be regenerated. (No electrical grid energy used).
- Performance (B): Gas recovery ranged from 30 mL-H₂ to 17 mL-H₂ (93–94% H₂, 6–7% CO₂) [bars].
- Gas production rate ranged from 1.6 m³ H₂/m³·d to 0.5 m³ H₂/m³·d [circles] [60 mL reactor, both chambers].
- Coulombic efficiency using acetate $_{CE}$ = 72% to 50%. Maximum Yield = 3.4 mol H₂/mol acetate.
- Current and H₂ were successfully generated in the MREC using NH₄HCO₃ solutions and no external power supply. Construction of a larger reactor (several hundred mL, with multiple anodes) for testing NREL fermentation effluent for H₂ production is ongoing toward meeting Milestone 3.2.3-1 (9/13).

Collaborations

• Task 1 (Bioreactor):

Dr. Ali Mohagheghi, National Bioenergy Center at NREL (biomass pretreatment and characterization).

• Task 2 (Genetic Methods):

Drs. David Levin and Richard Sparling at the University of Manitoba, Canada. NREL is an international collaborator of the Genome Canada Grant award to co-develop genetic tools for pathway engineering in *C. thermocellum*.

• Task 3 (MEC):

Dr. Bruce Logan, Penn State University (microbial electrolysis cells to improve H_2 molar yield). Task 3 was cost shared by other projects of the investigator.

Proposed Work

Task 1 (NREL):

- Complete the H₂ production profiles from cellulose (rate, yield) using shorter HRT, varying frequency and volume of medium replacement in sequencing fed batch reactor (FY13, FY14)
- Guided by the optimal parameters derived from above, determine H₂ production rate and H₂ molar yield using lignocellulosic biomass (FY14)

Task 2 (NREL):

- Test the pyruvate-to-formate pathway mutants for H₂ production rates, H₂ molar yield, and metabolites in bioreactors (FY13, FY14).
- Generate double knockout mutants by also deleting either lactic acid or the ethanol pathway (FY14).
- Using the optimized bioreactor paramters, test the above mutants for improved H₂ molar yield (FY14).

Task 3 (Penn State):

- Design, build, and test larger prototype MREC reactor with acetate solution for scalability (FY13).
- Evaluate performance of new MREC with NREL fermentation effluent as to H₂ yields, H₂ production rates, and gas production (FY13).
- Acclimate MECs separately to protein (bovine serum albumin) and acetate in batch-fed reactors, followed by continuous mode, and then with NREL fermentation effluent in terms of H₂ yields and gas production rates (FY14).

Summary

Task 1:

- Designed and built a feed tank that delivered cellulose reliably to the bioreactors, with less than 10% standard deviation of H₂ output in the bioreactor.
- Increased rate of H₂ production by 3.8-fold and H₂ molar yield by 53% via manipulating HRT, frequency, and liquid volume replacement, at either 2.5 g/L or 5 g/L cellulose loading.
 Task 2:
- Generated proprietary plasmids and optimized protocols for reliable transformation in *C. thermocellum*.
- Produced five *C. thermocellum* mutants lacking the *hpt* gene, which served as the base strain for targeted pathway mutagenesis without leaving an antibiotic marker.
- Produced eight pyruvate-to-formate pathway mutants with ~60% increase in ethanol production.

Task 3:

- Evaluated performance of MEC using fermentation effluent in terms of H₂ yields, H₂ production rates, and gas composition.
- Verified boosted voltages can increase protein utilization in the fermentation effluent.
- Successfully produced H₂ gas without an external energy input in an MREC using salinity gradient energy.