2013 DOE Hydrogen and Fuel Cells AMR

Vessel Design and Fabrication Technology for Stationary High-Pressure Hydrogen Storage

Zhili Feng (PI), Fei, Ren, Wei Zhang, Yanli Wang, Yong Chae Lim, and John Jy-An Wang

Oak Ridge National Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ground level

Overview

Timeline

- Project start date: Oct. 2010
- Project end date: Sep. 2015
- Percent complete: 50%

Budget

- Total project funding
 - DOE share: \$3,000K
 - Contractor in-kind share: 20%
- Funding for FY13: \$800K (anticipated)

Barriers

- Barriers addressed
 - F. Gaseous hydrogen storage and tube trailer delivery cost
 - G. Storage tank materials and costs

Partners

- Interactions / collaborations
 - Global Engineering and Technology
 - Ben C. Gerwick, Inc.
 - University of Michigan
 - MegaStir Technologies
 - ArcelorMittal
 - ASME
 - U.S. Department of Transportation
- Project lead
 - Oak Ridge National Laboratory (ORNL)

<u>Relevance</u> – Technology Gap Analysis for Bulk Storage in Hydrogen Infrastructure

Gaseous Hydrogen Delivery Pathway *

Managed by UT-Battelle

3 for the U.S. Department of Energy

* Adapted from DOE's Hydrogen Delivery, in Multi-Year Research, Development and Demonstration Plan, 2007

Bulk storage in hydrogen delivery infrastructure *

- Needed at central production plants, geologic storage sites, terminals, and refueling sites
- Important to provide surge capacity for hourly, daily, and seasonal demand variations

Technical challenges for bulk storage

- Current industry status: pressure vessel made of low alloy steels
- Safety concern: hydrogen embrittlement to steels due to long-term H₂ exposure
- High capital cost especially for highpressure storage

Project Objectives

- Address the significant safety and cost challenges of the current industry standard steel pressure vessel technology
- Develop and demonstrate the steel/concrete composite vessel (SCCV) design and fabrication technology for stationary storage system of high-pressure hydrogen that meet DOE technical and cost targets

Table 3.2.4 Technical Targets for Hydrogen Delivery Components *								
Category	2005 Status	FY 2010 Status	FY 2015 Target	FY 2020 Target				
Stationary Gaseous Hydrogen Storage Tanks (for fueling sites, terminals, or other non- transport storage needs)								
Low Pressure (160 bar) Purchased Capital Cost (\$/kg of H ₂ stored)	\$1000	\$1000	\$850	\$700				
Moderate Pressure (430 bar) Purchased Capital Cost (\$/kg of H ₂ stored)	\$1100	\$1100	\$900	\$750				
High Pressure (820 bar) Purchased Capital Cost (\$/kg of H2 stored)	N/A	\$1,450	\$1,200	\$1000				

* DOE FCT Multi-Year Plan updated 2-2013

http://www1.eere.energy.gov/hydrogenandfuelcells/mypp/

Managed by UT-Battelle

4 for the U.S. Department of Energy

- By 2015: about 17% reduction
- By 2020: about 31% reduction

Technology: Steel/Concrete Composite Vessel for Compressed H₂

Versatility:

- Different pressures: Low (160 bar), moderate (430 bar) and high (820 bar)
- Different storage volumes
- Above ground or under ground

5 for the U.S. Department of Energy

Baseline specifications: 1,500 kg of H₂ in a stationary vessel:

- Refill 260 passenger cars (based on 5.6 kg H₂) tank per car)
- Interior volume = 2,300 ft³ (65.1 m³) @ 5,000 psi (345 bar) & room temperature

Technical Approach

- Vessel design technology:
 - Use of commodity materials (e.g., structural steels and concretes) for achieving cost, performance and safety requirements
 - Mitigation of hydrogen embrittlement to steels especially high-strength low alloy grades
- Vessel fabrication technology:
 - Advanced, automated manufacturing process for layered steel tank
 - Embedded sensors to ensure the safe and reliable operation
- Safety and performance:
 - Industry codes and standards such as ASME Boiler and Pressure Vessel (BPV) Code for safe design of pressure vessel
 - Layered design: Leak before burst (for avoiding catastrophic failure)
 - Steels and concretes:
 - Mechanical properties (e.g., static, fatigue and creep) well established
 - Tolerant to third-party damage
 - Many decades of construction and operation experience (e.g., routine inspection, maintenance, repair etc.) for pressure vessels

Overall Project Scope and Plan

- Phase I: Conceptual design (completed FY11)
- Phase II: Cost analysis (completed FY12)
 SCCV engineering and cost analysis met DOE cost target
- Phase III: Technology development and demonstration:
 - Design, engineering and fabrication of representative mockup vessels (FY13/14)
 - Testing and technology validation (FY14/15)

Baseline Designs with Varying Usage of Steels and Concretes

Various combination of steel and concrete for cost and fabricatability considerations

Case 1: Steel only

Current industry status

Pre-stressed concrete sleeve carrying 50% of hoop stress

Case 3: Concrete and Steel "Liner"

Pre-stressed concrete enclosure carrying 70% of hoop and axial stresses while steel liner carries 30% of the loads

Overview of Cost Analysis Approach

Example: Cost Analysis for Inner Steel Tank

Managed by UT-Battelle 10 for the U.S. Department of Energy NATIONAL National Laboratory

Example: Cost Analysis for Concrete

- Structural design
 - Input: 5000 psi, 50/50, ID = 54", H = 40 ft, 390 kg
 H2
 - Output: ts = 2.5", tc = 8", prestressing = 4 layers (192 ft)
- Direct cost
 - − Concrete = 16 yd³ \rightarrow \$3,919
 - − Prestressing = 22,500 lb \rightarrow \$36,527
 - − Rebar = 2500 lb → \$1,897
 - Wall → \$1,528
 - − Painting \rightarrow \$1,724
 - Subtotal = \$45,595
 - Contract cost = \$69,385
 Indirect cost = \$37,154
- Total = \$106,539
- H₂ storage cost = \$106,539/390 kg = \$273 /kg H2

Managed by UT-Battelle 11 for the U.S. Department of Energy

Example: Effect of Load Carrying Ratio (Concrete only)

H ₂	Tank ID	Tank	50/50	40/60	30/70	DOE
pressure		height				FY20
160 bar	72"	27.5'	\$214	\$838	\$908	\$700
430 bar	72"	27.5'	\$173	\$558	\$730	\$750
860 bar	72"	27.5'	\$245	\$740	\$1071	\$1,00
						0

- The total cost including steel tank and concrete for 40/60 and 30/70 designs is expected to largely exceed DOE cost target.
- Moreover, there is a minimal thickness needed in order to avoid buckling during pre-stressing step in the fabrication. In other words, the bulk concrete vessel with thin liner does not work due to liner buckling.
- Therefore, the 50/50 design is selected and examined in details.

12 for the U.S. Department of Energy

Accomplishment: Manufacturing cost analysis

- With the support of industry partners, we successfully completed a highfidelity manufacturing cost analysis and demonstrated that the SCCV technology can exceed the relevant cost targets set forth by DOE
- Baseline SCCV design: 50/50 load carrying ratio, 6 ft diameter, 27.5 ft height
- Details of cost analysis in ORNL Technical Report

Managed by UT-Battelle

13 for the U.S. Department of Energy

<u>Accomplishments</u> - Fabrication Technology for Layered Steel Tank: Multi-Layer, Multi-Pass Friction Stir Welding of Thick Steel Section

Temperature (°C) Superior Charpy impact properties, much higher than the base metal

Grain refinement results in improvement in mechanical

properties

Weld metal

Managed by UT-Battelle

14 for the U.S. Department of Energy

A572 Grade 50 steel

Approach: Hydrogen Mitigation Concept in Multi-Layered Vessel

With little or no hydrogen pressure present for the 2nd and all the outer layers, the damage effect from hydrogen is significantly decreased, and therefore, the service life of the steel vessel is extended.

Managed by UT-Battelle 15 for the U.S. Department of Energy

Approach: Lab Scale H₂ Permeation Experiment

Layered specimen design

- Hydrogen permeation apparatus are designed to demonstrate the effectiveness of the novel hydrogen mitigation technology.
- The specimen has a layered structure and designed to fit into our existing H2 pressure cell.
- The diffusible H2 collected through each layer will provide quantitative measure of the effectiveness of the novel design concept.

Managed by UT-Battelle 16 for the U.S. Department of Energy

National Laboratory

Approach: H₂ Permeation Apparatus

17 for the U.S. Department of Energy

<u>Accomplishment</u>: Hydrogen Mitigation Technology

- We have developed the initial experimental concept to demonstrate the effectiveness of the novel hydrogen mitigation technology to prevent hydrogen entering the structural steel layer
- A layered specimen has been designed and fabricated, and the specimen has passed the initial scoping test.
- Diffusible H2 measurement technique has been selected and will provide quantitative measurement for the proposed technology

Demonstration: Mock-Up SCCV Design

- Design, engineering and manufacturing a small but representative mock-up SCCV (1/4 – 1/5 size), capturing all major features of SCCV design and fabricatability with today's manufacturing technologies and code/standard requirements
- Obtain "real-world" performance data
- A mock-up with <u>manway</u> is highly desired
 - Manway is typically needed in real applications

3.83' (46"

Mock-up: Small

10.93'

6.33'

3'

Internal inspection

Repair

6

19 for the U.S. Department of E (~ 30 kg of H_2)

Mock-Up SCCV Demonstration: Design of Composite Vessel

- Design capability: 6250 psi, 89 Kg H₂,
- Height = 9' 7", OD = 4' 1³/₄"
- Steel inner vessel
 - Manway, Lifting lugs, Support base
- Concrete:
 - 7" thick, additional 6" at each end to mitigate stress concentrate near the joint
- Ten layers of φ0.192" pre-stressing wire

Mock-Up SCCV Demonstration: Status (March, 2013)

- Vessels with manway are preferred
- Quotes from multiple vendors have been obtained.
- Refinement of mock-up vessel design will be performed to examine the geometry on the manufacturing cost (several iterations may be needed)
- Possible measures to further reduce the mock-up vessel cost will be explored
 - Tank geometry
 - Design pressure
 - Communication with vendors (e.g. shell cladding instead of weld overlay, price negotiation)

Industry Participations

Pa	artners / Interactions	Expertise and Extent of collaboration
•	Global Engineering and Technology	Design, engineering and consulting firm specialized in high-pressure steel vessels
•	Ben C. Gerwick, Inc.	Design, engineering and consulting firm specialized in pre-stressed concrete vessels
•	University of Michigan	High-performance concretes
•	MegaStir Technologies	Friction stir welding of thick steel sections
•	ArcelorMittal	High-strength steels
•	ASME (B31.12)	Relevant code committee on high-pressure hydrogen services
•	DOT	Qualification of stationary storage vessel for high- pressure hydrogen

Project Summary

Relevance:	 Address the significant safety and cost challenges of the current industry standard steel pressure vessel technology Demonstrate the high-pressure storage vessel technology for CGH₂ that can meet or exceed the relevant DOE cost target 						
Approach:	 Integrated vessel design and fabrication technology: Use of commodity materials (e.g., steels and concretes) Mitigation of hydrogen embrittlement to steels Advanced, automated manufacturing of layered steel tank 						
Technical Accomplishments	 A high fidelity design and manufacturing cost analysis demonstrated that the SCCV technology can exceed the relevant cost targets set forth by DOE Friction stir welding technology can potentially further reduce the cost and improve the weld properties Lab scale experiment test is underway to prove the effectiveness of layer steel structures to manage hydrogen embrittlement in SCCV Technology demonstration is underway with a ¼ scale mockup SCCV 						
Collaborations:	Active partnership with industry, university and other stakeholders						
Future Plan:	 Complete the final engineering design of mockup SCCV (FY14) Perform extensive technology validation testing of SCCV under various hydrogen service conditions (FY14/15) Technology demonstration and transfer (FY15) 						

Acknowledgements

- Project Sponsor: DOE Hydrogen and Fuel Cell Technologies Program
- Sara Dillich and Erika Sutherland (DOE)
- David Wood (ORNL)
- James Merritt (U.S. Department of Transportation)
- Louis Hayden (ASME B31.12)
- Hong Wang and Larry Anovitz (ORNL)

Backup slides

Managed by UT-Battelle 28 for the U.S. Department of Energy

FY2013 Milestones

- 2.1.1 Complete the detailed engineering drawings of a small-scale mock-up composite vessel that is capable of storing hydrogen at 430 bar pressure and obtain vendors' quotes for construction (7/2013)
- 2.1.2 Design and perform a special high-pressure hydrogen permeation experiment, to demonstrate the effectiveness of the multilayer inner tank approach to prevent hydrogen permeating into the structural steel layers to cause hydrogen embrittlement. Achieve 90% reduction of hydrogen permeation through the carbon steel multilayers as compared to conventional thick single layer case, as measured by the amount of hydrogen permeated through the material during the experiment (6/2013).
- 2.1.3 Demonstrate that the tensile strength and ductility of multi-layered friction stir welds for 1.5 inch thick structural steel layers are comparable to those of the base metal, or exceeding those of conventional arc welds (6/2013)
- 2.1.4 Complete the detailed technical report summarizing the mock-up vessel specifications, finite element analysis results, component integrity testing results (9/2013)

Cost Analysis Modeling

Step #1	Engineering calculations based on relevant design cod (e.g., ASME BVP) to determine the vessel dimensions steel wall thickness, concrete wall thickness, etc.	les such as
	Dimensions constrained by typical capacity of industrimanufacturing facilities.	al
Step #2	Detailed, step-by-step manufacturing process flow for composite vessels	 `
Step #3	 Cost estimation for each manufacturing step by consi Materials, consumables, and labor 	dering:
	 Basis for cost estimation: Data from relevant fabrication projects by Global Engir and Technology and Ben C. Gerwick, Inc. Vendor quotes 	eering

Cost Modeling for Outer Concrete Sleeve

2222	-	 	
			333
			3333
			XXX
			SSB -
33555			
			1883
XX -			
xxxxx .			αλλλλ

Commercial Production Only (2011 Costs)							
ROM	Unit	Quantity	Unit Cost	Cost		Total	
Concrete (Inc. Labor	су	9	\$800	\$ 7,200		\$ 7,200	
& Materials)							
Conc. Reinf. (Inc.	b	1,200	\$1.80	\$ 2,160		\$ 2,160	
Labor & Materials)							
Tank Plate (Inc.	b	127,000	\$0.00	\$-		\$ -	
Labor & Materials)							
Prestressing (Inc.	lb	35,000	\$4.00	\$140,000		\$ 140,000	
Labor & Materials)							
Total				\$149,360			
Total Purcahse Cost,	\$					\$ 149,360	

Casting of a concrete core around the steel cylinder Winding and tensioning of steel tendons Example of Excel spreadsheet for costing of pre-stressed concrete reinforcement

Cost Modeling of Steel Vessel Head

Low alloy steel Purchase of two pieces of semispherical heads made of low-alloy steel Stainless steel clad Weld cladding of austenitic stainless steel layer on the

- head's inner surface
- Heat-treatment

SA-537 CL2 head			
Size:	72" ID x 4.	25"	
Weight:	14834		
Cost:	\$29,667	at \$2.00 pe	er lb
Cladding and heat t	reatment		
Weld overlay strip (3/8") and f	ux	
Weight:	424		
Cost:	\$3,469	at \$8.18 pe	er lb
Labor			
sand blas	t 4		
set up	12		
overlay	9		
sand blas	t 4		
	29	•	
I,C,T	8		
H.T.	4		
	37		
Transport	t 5		
Total hrs	42	\$100	\$4,165
Freight			\$912
TOTAL COST for one	head		\$ 37,301
et of Excel sp	preads	neet to	r nead

Effect of Tank Geometry

Example: Engineering Calculations for 50% Steel + 50% Concrete Vessel

Managed by UT-Battelle 34 for the U.S. Department of Energy

Baseline vessel design and not optimized for cost

Example: Cost Modeling of Steel Vessel Shell and Other Major Parts

				Bill of Mat	terial				
shell girth	Part	Number	Thickness	Size W	Size L	Material	Weight	Price	Total
- weld	Heads	2	4.25+.125	60" ID		SA-537-CL2	30702	\$52,730	\$105,460
 Word	Shell	35	0.3125	96.75	212	SA-724-B	63623	\$1.0135	\$ 64,481
	Tapered PL	1	0.75	36	212	SA-724-B	1623	\$0.9535	\$1,548
	Shell Liner	2	0.5	115	212	304&516-70	7224	\$8,810	\$18,054
	Skirt (2' grd. clr.	1	1.00	60	249	SA-516-70	4237	\$1.00	\$4,237
	Base Ring (pl)	1	1.00	54	69	SA-516-70	1057	\$1.00	\$1,057
	Top Ring (bar)	1	1.00	6	288	SA-516-70	490	\$1.40	\$686
l avered	Gussets	1	0.75	54	54	SA-516-70	620	\$1.40	\$868
	2" noz	2				SA-336-2	576	\$4.00	\$2,304
shell	Misc. Clips/lugs	5					600	\$1.40	\$840
	Paint							\$250	\$150
	Fixtures								\$500
							110752		\$200,186

- Fabrication of multi-layered steel ring by repeated wrapping and welding
- Welding of heads to the layered cylinder

Machine Heads						21.28
Grind 3:1 Taper	2 heads					7
Plywall Liner st	ainless cla	d 1 ring	(46% over	standard le	ength)	209
Plywall Shell 1	ring		(46% over standard length)		561	
groove final wr	ap for vent	ing	2' x 2' grid	at 10 feet o	of groove/hou	35
2-2" nozzles (W	/O bore)					20
Install 2-2" noza	zles					26
Skirt						135
Misc. Clips and	Lugs					20
		Subtotal				1034
	Heat Treat	t heads as	sub-assem	blies (lugs/	nozzles + skir	29
	Sandblast	heads on I	ID after he	at treatmer	nt	11
	Inspect, C	lean, Test		10%		103
	Sandblast	and Paint		697	ft2	21
	Load			truck shipr	nent	10
		Subtotal				1208
	Transport			8%		97
				TOTAL HOU	JRS	1305.16

Example of Excel spreadsheet for shell costing

Example: Effect of Tank Geometry

• Prestressing cost is proportional to the total length of the wire used, which is proportional to the PCPV outer surface area and the number of layers.

H_2 pressure =160 bar	Tank 1	Tank 2
Height (ft)	55	11
ID (in)	36	84
Steel thickness (in)	3	3
Concrete thickness (in)	8	10
Storage volume (ft ³)	378	314
PCPV cylinder surface area (ft ²)	782	101
Layer of prestressing wire	2	3
Total prestressing wire coverage (ft ²)	1563	303
Prestressing used per unit storage volume (ft ² /ft ³)	4.1	0.96
Cost of kg H_2 due to prestressing	335	79
Total PCPV cost per kg H ₂	456	115

Managed by UT-Battelle

36 for the U.S. Department of Energy

Fabrication Technology for Layered Steel Tank: Friction Stir Welding

- Our previous study* of single-pass friction stir welding (FSW) shows:
 - Highly-automated welding process for reducing labor cost
 - No use of welding consumables (e.g., filler wires)
 - Superior joint strength, low distortion, and low residual stresses

* Feng, Z. Steel, R. Packer, S. and David, S.A. "Friction Stir Welding of API Grade 65 Steel Pipes," 2009 ASME PVP Conference, Prague, Czech Republic.

Mock-Up SCCV Demonstration: Inner Steel Vessel Design

Managed by UT-Battel 38 for the U.S. Departmen

