Characterization of Fuel Cell Materials PI: Karren L. More

Co-PIs: David Cullen, Ray Unocic, and Shawn Reeves

Oak Ridge National Laboratory Oak Ridge, TN 37831-6064

2014 DOE Annual Merit Review June 19, 2014

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Timeline

- Project initiated in FY2000
- Continuous fundamental research on the microstructural characterization of fuel cell materials to improve durability

Budget

- Funding in FY13 \$600k (~1.5 FTE)
- Funding in FY14 \$600k (~1.25 FTE)

Barriers

- Fuel Cell Barriers Addressed
 - A: Durability
 - C: Performance

Partners/Collaborators

- Los Alamos National Laboratory
- General Motors
- 3M
- Automotive Fuel Cell Cooperation (AFCC)
- Ballard
- Nissan Technical Center North America
- Ford Motor Co.
- University of Tennessee
- Argonne National Laboratory
- CEA-Grenoble, France
- IRD Fuel Cells
- Fuel Cell Energy
- McMaster University, Canada
- Additional DOE project collaborations: LANL, ANL, NREL, and 3M. Results from these studies are NOT included in this project summary

Relevance - ORNL Research Objectives

- Identify, develop, and optimize novel high-resolution imaging and compositional/chemical analysis techniques, and unique specimen preparation methodologies, for the μm-to-Å scale characterization of material constituents comprising fuel cells (catalyst, support, membrane)
- Understand fundamental relationships between the material constituents within fuel cell MEAs and correlate these data with stability and performance as per guidance/input from members of the fuel cell community
- Integrate microstructural characterization within other DOE projects
- Apply advanced analytical and imaging techniques for the evaluation of microstructural and microchemical changes to elucidate microstructure-related degradation mechanisms contributing to fuel cell performance loss
- MAKE CAPABILITIES AND EXPERTISE AVAILABLE TO FUEL CELL
 MAKE CAPABILITIES AND EXPERTISE AVAILABLE TO FUEL CELL

Relevance – ORNL Collaborates With Many External Partners To Address Critical Fuel Cell Issues

component durability	•	LANL (sub) – Durability Improvements through Degradation Studies
	•	LANL – Accelerated Testing Validation
]•	Nissan TCNA – Catalyst support durability
	\ •	UTC Power (sub) - Improved Accelerated Stress Tests Based on FCV Data (project ended)
	1 • · ·	3M and AFCC – NSTF durability testing
	•	Fuel Cell Energy – novel membrane and MEA characterization
novel catalysts — and supports	•	LANL (sub) – The Science and Engineering of Ultralow PGM Catalysts
	•	<u> NREL (sub) – Extended, Continuous Pt Nanostructures in Thick, Dispersed Electrodes</u>
	•	LANL (sub) – Non-Precious Metal Fuel Cell Cathodes: Catalyst Development and Electrode
		Structure Design
	•	3M – NSTF alloy cathode catalysts
	<∙	Ford Motor Co. – novel carbon supports
	1 · · ·	LANL – Engineered Nano-scale Ceramic Supports for PEM Fuel Cells
	1 · · ·	LANL – Advanced Materials and Concepts for Portable Power Fuel Cells
	•	<u> ANL (sub) – Nanosegregated Cathode Catalysts with Ultra-low Pt Loadings</u>
	•	<u> 3M (sub) – Durable Catalysts for Fuel Cell Protection During Transient Conditions</u>
	•	<u> 3M (sub) – High-Performance, Durable, Low Cost MEAs for Transportation Applications</u>
		CM innemer levere/filme on model substrates, innemer distribution(s) within electrodes
ionomer	11	GM - Tonomer layers/Initis on model substrates; Tonomer distribution(s) within electrodes
	<	Banard – ionomer distributions as a function of carbon support type and Pt loading
studies	1.	CEA-Grenoble – characterization of ionomer distributions within catalyst layers
	Ŀ	McMaster University – STXM characterization of ionomer distributions in catalyst layers

Approach: Use Advanced Microscopy to Investigate Structure and Composition of Fuel Cell Materials and Correlate Observations With Performance

- Apply state-of-the-art electron microscopy techniques for the characterization of MEA material constituents from μm-to-Å-scale:
 - Catalyst nanoparticles and catalyst NSTF composition, chemistry, size, and morphology
 - Re-cast ionomer within catalyst layers
 - Catalyst support materials
 - MEAs/GDLs/MPLs
- Collaborate with industry, academia, and national laboratories to make capabilities and microscopy expertise available to correlate structure/composition with MEA processing and/or life-testing studies

FY13 Milestones:

- Report results of model Pt-ionomer study with GM; to be conducted using ORNL's unique lowvoltage microscope (equipped with EELS) and XPS to establish critical Pt-ionomer interactions and ionomer chemistry-composition as a function of ionomer thickness/loading. *Completed*
- Publish results summarizing imaging-based methods developed to quantify amount of Pt loss/degradation occurring via dissolution/migration and nanoparticle coalescence. Completed

FY14 Milestones:

- Initiate new collaboration with an industrial partner to characterize novel/new catalyst and/or catalyst support structures.
- ♦ Complete parametric study of ionomer thin films with General Motors and collaboratively publish results. This study will establish baseline conditions to quantitatively assess ionomer structure and composition in an electron microscope.
- Establish electrochemical conditions for potential cycling and potential holds for in-situ microscopy liquid cells to study Pt coarsening and carbon corrosion in real time.
 In Progress
- Complete report summarizing tomography characterization results to study NSTF catalyst degradation during MEA aging.
 In Progress

Technical Accomplishments and Progress: Responses to 2013 Year Reviewer Comments

 FY13 Reviewer Comment: Besides continuing the very successful work, the researchers plan to correlate the knowledge to experimental data from fuel cell testing. This takes the work to a next, higher stage. As for the observed compression of the catalyst layers, it is recommended the project put in effort regarding understanding the mechanism of densification in detail. This might open up new options of carbon modification other than the already-identified Pt on low surface area carbon (LSAC).

<u>- FY14 response</u>: consistent with recommendation above, work has been done to provide insight regarding compression/densification in terms of catalyst dispersion and accelerated carbon corrosion.

• *FY13 Reviewer Comment:* The electrode structure (catalyst + ionomer) can be significantly different depending on formation (coating, spraying, etc.), and it may be necessary to examine the as-made, pre-conditioned, and used MEAs to ascertain the structure as it exists during actual fuel cell operation.

 <u>- FY14 response</u>: we have made significant progress in identifying proper conditions for evaluating ionomer within catalyst layers and characterizing ionomer distributions after aging.

Technical Accomplishments and Progress: Work Focused on Topics Prioritized by FC Community (Collaborators, Tech Team, and FY13 AMR Reviews)

Past AMR presentations have highlighted ORNL research specific to:

- Sub-Å-scale alloy catalyst nanoparticle characterization
- Understanding carbon corrosion mechanisms
- Pt dissolution/migration and coarsening studies
- ORNL has continued to focus resources on these topics, but has undertaken several new initiatives:
 - Ionomer distribution/quantification within catalyst layers
 - In-situ microscopy
 - Compaction/compression effects in cathode layers
 - Catalyst dispersion

Ultimate goal – <u>quantitative</u> study of ionomer distributions (through-electrode loadings)

9 Managed by UT-Battelle for the U.S. Department of Energy

2014 DOE Annual Merit Review

eV

Slightly thicker ionomer films used to determine proper conditions for microanalysis

~5-25nm thick ionomer films were spin-coated across nanoporous Si

Ionomer films were studied at 60-200kV at both RT and LN₂ using various electron doses

> Results demonstrate that LN₂ cooling and film thickness have pronounced effects on F-loss for both EELS and EDS data acquisition.

A 2-3X order of magnitude decrease in electron beam damage can be achieved by using LN₂ cooled specimens and higher microscope operating voltages

Flourine loss as a function of electron dose @ 60kV during STEM-EELS

Dose (e⁻/nm²)

1.E+05

1.E+06

1.E+07

1.E+04

30%

20%

109

1 E+02

Flourine loss as a function of voltage and specimen cooling during STEM-EDS

Dose (e'/nm²)

Quantitative STEM study of ionomer distributions (through-electrode loadings)

- Two different electrodes preparation methods (target I/C=1 and 50% Pt/C):
 - Catalyst-coating-on-decal (CCD)
 - Catalyst-coating-on-diffusion-media (CCDM)
- "Lessons learned" from model ionomer layer systems applied to quantify ionomer distribution (through-electrode loadings) and minimize F-loss —>LN₂-cooling and low electron doses

- CCD electrode exhibits a "bowed" ionomer profile.
- CCDM electrode exhibits a linearly sloped ionomer profile, with a lower I/C at the diffusion media interface due to some drainage of ionomer into diffusion media.
- *lonomer distributions can be quantified using STEM by mitigating beam damage effects.*

• Results are comparable in spatial resolution with STXM performed using synchrotron.

Increasing resolution to map ionomer distributions on a finer scale

EDS maps acquired in an FEI Osirus equipped with large solid-angle SDD with pixel size of 5nm, 200kV operating voltage, LN₂ cooling, and electron dose of 4X10⁶ e⁻/nm². MVSA-PCA methods applied to "denoise" spectra. Thin ionomer layers are clearly resolved!

Increasing resolution to map ionomer distributions on a finer scale

Pt/Vulcan

EDS maps acquired in an FEI ChemiSTEM equipped with large solid-angle SDD – pixel size of 5nm, 200kV operating voltage, LN₂ cooling, and electron dose of 1X10⁶ e⁻/nm².

Distribution of ionomer within fresh electrode varies with carbon support.

Stability of ionomer also varies with carbon support (400hrs @ 1.2V).

Technical Accomplishment (FY13): Understanding Effect of Cathode Carbon Corrosion on MEA Performance

or the U.S. Department of Energy

Technical Accomplishments and Progress: Mechanisms Contributing to Collapse of Cathode Layers

2D image analysis to visualize and estimate pore volume

The same technique can be applied to capture localized regions of high Pt loading that act as "sites" for accelerated carbon corrosion

... loss of graphitic structure, support

Localized accelerated carbon corrosion (and electrode collapse) can be attributed to initial Pt **DISPERSION...**

Pt/Vulcan – localized regions of high Pt loading corrode/densify faster than surrounding regions – associated with larger (encapsulated) Pt particle sizes, dense graphite oxide, loss of porosity, and embedded ionomer

Collapse/thinning/compression of cathode catalyst layer occurs via concurrent loss of ionomer network, localized densification and structural/chemical transformation of Vulcan support, and change in pore structure.

Technical Accomplishments and Progress: Pt Dispersion Effects

16 Managed by UT-Battelle for the U.S. Department of Energy

2014 DOE Annual Merit Review

Technical Accomplishments and Progress: Pt Dispersion Effects

Pt/LSAC-free 100 hr

200 hr

Pt/LSAC

Pt Particle Size (nm)

120

100

80

60

40

20

Pt Particles

Pt coarsening during ASTs :

1. Carbon corrosion AST 400 hour hold @ 1.2V

3.0-to-5.2nm within first 100hrs with no further change

2. Catalyst degradation AST 30,000 (0.6-1.0V) cycles

During both carbon and catalyst ASTs, Pt growth due to coalescence of closely spaced nanoparticles on LSAC

17 Managed by UT-Battelle for the U.S. Department of Energy

2014 DOE Annual Merit Review

Technical Accomplishments and Progress: Pt Dispersion to Optimize Stability

Optimized Pt nanoparticle DISPERSION on LSAC combined with its enhanced corrosion resistance:

• increase BOL-ECSA by uniformly dispersing Pt across ALL surfaces of LSAC support.

• more uniform Pt-Pt interparticle spacing will decrease Pt coalescence.

• additionally decrease ECSA loss through improved Pt anchoring on graphitized LSAC surfaces.

• retain inherent corrosion resistance of graphitic carbon

18 Managed by UT-Battelle for the U.S. Department of Energ

Biological materials (cells), nanocrystal nucleation & growth, particle interactions, fluid-solid interfaces, etc.

- H. Zheng, et al., Science **324** (2009)
- J.E. Evans et al., Nano Letters 11 (2011)
- N. De Jonge and F. Ross *Nature Nanotechnology* **6** (2012)
- H.-G. Liao and H. Zheng JACS **135** (2013)

Microfluidic electrochemical cell is sealed within the tip of a TEM holder and interfaced with an external potentiostat and fluid delivery system

Electrochemical characterization of baseline system: ferricyanide/ferrocyanide redox couple

Aqueous Electrolyte Ingredients: 150 $[Fe(CN)_6]^{4-}$ Oxidation 1M KCI – Supporting electrolyte 1st Scan Fe(II)/Fe(III) 10mM NaCN – Inhibits analyte decomposition 2nd Scan E_p^a and limits formation of Prussian Blue Scan Rate: 1000 mV s⁻¹ 100 Flow Rate: 10 µL min⁻¹ $2 \text{ mM K}_3\text{Fe}(\text{CN})_6$ $2 \text{ mM K}_4\text{Fe}(\text{CN})_6$ Current / nA 50 $[Fe(CN)_6]^{3-} + e^- \longleftrightarrow [Fe(CN)_6]^{4-}$ Ferrocyanide (Fe²⁺) Ferricyanide (Fe³⁺) 0 [Fe(CN)₆]³⁻ Reduction Cathodic and Anodic Peaks: -50Fe(III)/Fe(II) Increase in Faradaic current due to redox of Ferri-Ferro cyanide and changes of the analyte -200-100200 100 N concentration at the electrode/electrolyte interface

Potential / mV vs Pt

R. Unocic et al., *Microscopy & Microanalysis*, in press (2014)

Dynamics of Pt Coalescence-CV

Future Work

- Combine ionomer imaging and microanalysis with modeling efforts to identify ionomer interactions with different carbon surfaces (this task has already been initiated).
- Now that proper imaging and analysis conditions for studying ionomer layers have been established, expand ionomer studies to specifically focus on aging effects as well as electrode/membrane interfaces.
- Perform dispersion optimization studies for Pt on LSAC
- Continue the development, optimization, and application of in-situ electrochemical TEM/STEM - correlate with bench-scale (RDE) catalyst testing and apply to other fuel cell material components (e.g., Pt on other supports, nucleation & growth studies, include ionomer layers etc.)
- Continue to establish collaborations with industry, academia, and national laboratories (including access via ORNL User Facilities) to Managed facilitate "transfer" of unique capabilities.

Project Summary

Technical Accomplishments and Progress:

25 Managed by UT-Battelle

Relevance: ORNL's microscopy expertise and state-of-the-art capabilities are integral to identifying materials degradation mechanisms, which are critical for improving materials structure for enhancing stability and performance

Approach: Our approach is "unique" in that it is fully collaborative in nature and benefits the entire FC community – applying advanced microscopy methods to solve relevant FC problems is the primary goal of this project

We continue to listen to our partners and address important issues - during the past year we have focused on optimizing imaging and analysis parameters for characterizing ionomer thin films, worked with many partners to characterize new fuel cell materials, and continued the development of in-situ capabilities. We continue to support the FC community with unique capabilities for microscopic evaluation of FC materials.

Collaborations: ORNL continues to establish new collaborations to provide access to unique imaging/analysis (microscopy) capabilities or to access lab (and expertise) for training.

Our goal in the coming year will be to further establish ORNL's Proposed Future Research: - role as a leader in in-situ microscopy to characterize fuel cell materials, and to combine microanalysis and theory to determine the atomic-scale interactions between ionomer films and support and/or nanoparticle surfaces.

2014 DOE Annual Merit Review

Technical Back-up Slides

Technical Accomplishment: Understanding Effect of Cathode Carbon Corrosion on MEA Performance

Similar "mixed" carbon oxidation clusters observed for 20% Pt/Vulcan MEA subjected to modified US drive cycle testing

1224 hr "wet" drive cycle

for the U.S. Department of Energy

25 nm

)14 DOE Annual Merit Review

Technical Accomplishment: Understanding Effect of Carbon Structure on Carbon Corrosion

28 Managed by UT-Battelle for the U.S. Department of Energ