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What are hydrogen carriers?

* Program’s definition:

— Hydrogen carriers are hydrogen-rich liquid or solid phase materials from which
hydrogen can be liberated on-demand. Ideal hydrogen carriers have relatively high
hydrogen densities at low pressure and near ambient temperature.

* Consensus from November workshop on hydrogen carriers:

— Keep a broad definition of hydrogen carriers and let the requirements for specific
applications narrow the scope of hydrogen carriers for consideration for those
applications.
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Examples of program activities on hydrogen carriers to date

* Priorto 2010 — supported Air Products and Chemicals to investigate heterocyclic
materials as potential hydrogen storage materials, focused efforts on n-ethylcarbazole

e 2018 — Initiated techno-economic analysis at Argonne National Lab to establish a
baseline comparison between conventional compressed and liquid hydrogen delivery
with several commonly cited hydrogen carriers

e 2018 — Initiated preliminary efforts within HyMARC to investigate hydrogen carrier
materials, with an emphasis on “additional” potential benefits (e.g., chemical
compression)

e 2019 —included a topic in the FCTO FOA on hydrogen carriers, selected 4 projects to
investigate and develop novel hydrogen carrier concepts

* Nov. 2019 — Held a hydrogen carrier workshop in Golden, CO - 74 participants
representing industry, universities, and national labs, and from N. America, Europe
and Asia
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For Techno-Economic Analysis (TEA) — where system boundary is set and
the pathway followed matters
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Baseline TEA of hydrogen carriers with compressed hydrogen

e All cases:
— 50,000 kg H,/day delivery to city gate terminal
— Includes 10 days of storage at city gate terminal
 Hydrogen Carriers
— Carriers transported from point of production to storage terminal
— Carriers transported 150 km from storage terminal to city gate terminal
— H, release at city gate terminal,
— Local distribution as compressed gaseous hydrogen to refueling stations
— Two-way carriers include transportation costs back to production site
* Gaseous Hydrogen case
— H, production using SMR
— Transmission as in trailer trucks for 150 km to city gate terminal

— Local distribution to hydrogen refueling stations
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Gaseous hydrogen baseline Argonne &

NATIONAL LABORATORY

$4.95/kg H, delivery to fueling station for gaseous hydrogen
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50 tonne H, per day by SMR, 150 km from production site to terminal, trailer truck transport, transmission and distribution costs combined
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Argonne &

NATIONAL LABORATORY

Hydrogen carriers included in baseline study

* One-way carriers
— Ammonia (separate H, production step)
— Methanol (direct with no separate H, production step)

* Two-way carrier

— Methylcyclohexane/toluene

MP BP H, Capacity Production Decomposition
°C °C wt% gL P, bar T,°C P,bar T,°C AH
kJ/mol-H,
Ammonia
-78  -334 17.6 121 150 375 20 800 30.6
Haber-Bosch Process  High-Temperature Cracking
Fe Based Catalyst Ni Catalyst
Methanol
-98 64.7 18.75 149 51 250 3 290 16.6
Cu/ZnO/Al, 04 Catalyst Steam Reforming
MCH
-127 101 6.1 47 10 240 2 350 68.3
Non-PGM Catalyst Pt/Al,O; Catalyst
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Factors to consider for hydrogen carriers

1. Capacity of carrier production/dehydrogenation plants:
a. Production - assumed plants not built and sized just based on targeted H, delivery per day;
b. Dehydrogenation - plants are sized for targeted hydrogen capacity

2. Production - cost and energy to produce hydrogenated carrier

3. Transmission — cost to delivery carrier from point of production to storage terminal (rail,
ship, pipeline, etc.) and then to city gate (150 km by truck)
a. For two-way carriers - includes cost to return dehydrogenated product to hydrogenation site

4. Dehydrogenation - cost and energy to dehydrogenate and release the hydrogen from
the carrier at the city gate terminal

a. Includes purification costs to clean-up the hydrogen

b. For two-way carriers — includes replacement costs of lost carrier (e.g., evaporation, side
reactions, etc.)

Dehydrogenation Distribution
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Plant capacity matters

Argonne &

NATIONAL LABORATORY

Example — methanol — production method can change as plant
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Levelized cost for production Argonne &

NATIONAL LABORATORY
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Transmission from point of production to city gate Argonne &

NATIONAL LABORATORY
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Transmission cost comparison through various means

Argonne &

NATIONAL LABORATORY

* H, capacity of the carrier is an important factor in determining the transmission cost by rail
- Toluene has nearly the same train transmission cost as methanol on tpd basis, but is >3X costlier on kg-H,

basis

* Toxicity and handling are also important factors in determining rail transmission costs
- Ammonia has nearly the same H, capacity as methanol but is >2X costlier to move by train

* Long H, or carrier pipelines (>1000 mile) do not offer significant cost savings
- Pipelines may not be economically viable for two-way carriers
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Levelized transmission cost comparison Argonne &

NATIONAL LABORATORY

Methanol transmission lowest, methylcyclohexane more costly due to return leg
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Capital cost of methylcyclohexane dehydrogenation plant Argonne &

NATIONAL LABORATORY
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Levelized decomposition cost comparison Argonne &
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= At high throughput, LDC decreases most for
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http:0.61-0.78

Distribution costs ceree

BERKELEY LAB

City-Gate Terminal to Refueling Comparing distribution as 350 & 500 bar
Station “Last-Mile” Distribution compressed H, and liquid H, for various
: distances
/ DISTRIBUTION \ -
Some key initial findings:
S FUEL * Cost savings for cH, do not scale at higher pressures,
[/\l D TRANGPORTATION STATION * The number of cH, trucks required increases rapidly
) | COMPRESSION . | ) (o ) with distance.
COOLING * LH, costs dominated by liquefaction cost and energy
[ penalty (32%).
\ LIQUEFACTION /

For baseline analysis, all cases kept constant:
* 400 kg H,/day dispensing rate at fueling station
* Trailer capacity of 1024 kg, 36 m3 volume

Distribution
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NATIONAL LABORATORY

Baseline levelized cost of H, at 50,000 kg per day Argonne &
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* At 50,000 kg H, per day, methanol produced at high volume in the gulf coast area, and transport to California can
be cost competitive with “locally” produced gaseous hydrogen.

*  Ammonia and methylcyclohexane have a cost premium over “locally” produced gaseous hydrogen
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Levelized costs of H, at various daily demands Argonne &

NATIONAL LABORATORY
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Analysis of formate salts as hydrogen carriers =z

Northwest
Electrochemistry enables regeneration of H <A
rrochemistry ree 2 Preliminary TEA suggests water removal
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is the most expensive process
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Solidsalt_ W Soluble  Ammonium & Potassium W Sodium TEA analysis suggests efforts are needed to perform regeneration
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Deliverable capacity limited by the solubility of formate at 20 °C at higher concentrations or a Use case with cheap source of neat,
Usable capacity limited by the solubility of bicarbonate at 60 °C e.g., nuclear reactor
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Summary

Hydrogen carriers can be cost competitive with gaseous hydrogen production
— Production capacity can influence cost competitiveness
— Transmission costs can vary depending on nature of the hydrogen carrier

— Two-way carriers are disadvantaged by two-way transportation costs and replacement costs

Application specific requirements need to be considered when determining suitability of a
hydrogen carrier

Boundary conditions should be considered when comparing different TEAs

Future activities

— Including comparison with liquid hydrogen transmission and distribution
— Expand analysis of other types of hydrogen carriers (e.g., formate salts)
— Investigation of impact of yield, cycle life, energy use, etc.

— Consider other potential benefits (e.g., chemical compression)
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