

2006 Annual DOE Hydrogen Program Merit Review

Hydrogen Storage

Sunita Satyapal Carole Read Grace Ordaz George Thomas¹

¹ Retired, on assignment to DOE, Washington DC

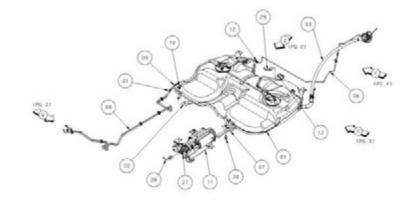
Outline

- Challenges
 - Goals and Targets
- Strategy
 - Focus on Materials-based Technologies
- Results: Progress in the last year
 - R&D Examples
 - Programmatic Accomplishments
- Future Plans

On-board hydrogen storage to meet all performance (wt, vol, kinetics, etc.), safety and cost requirements and enable a more than 300 mile driving range.

Targets	2010	2015
System Gravimetric Capacity (net)= "specific energy"	6 wt.% (7.2 MJ/kg) (2.0 kWh/kg)	9 wt.% (10.8 MJ/kg) (3.0 kWh/kg)
System Volumetric Capacity (net)= "energy density"	1.5 kWh/L (5.4 MJ/L) (45 g/L)	2.7 kWh/L (9.7 MJ/L) (81 g/L)
Storage system cost	\$4/kWh (~\$133/kg H ₂)	\$2/kWh (\$67/kg H ₂)

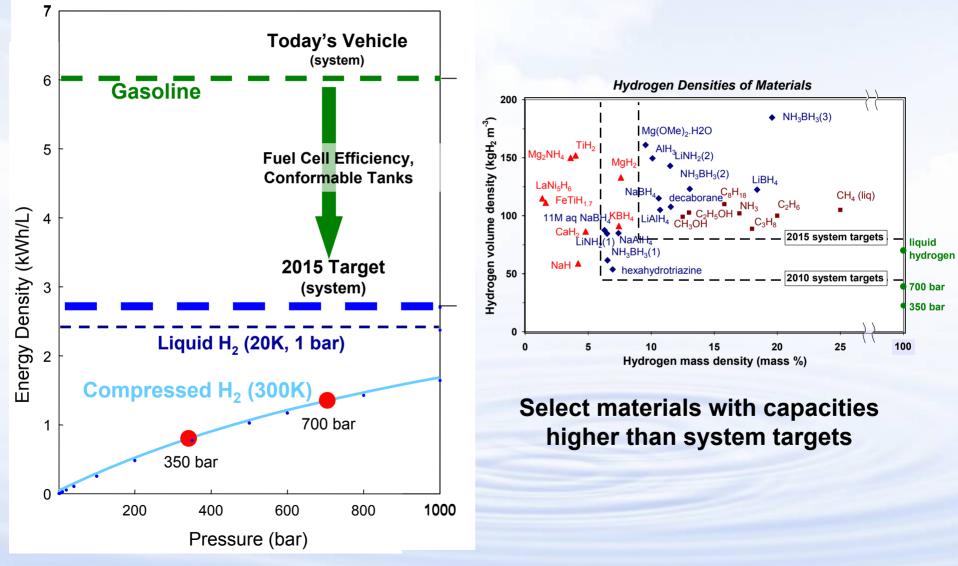
More targets and explanations at www.eere.energy.gov/hydrogenandfuelcells/



Targets are for Storage System

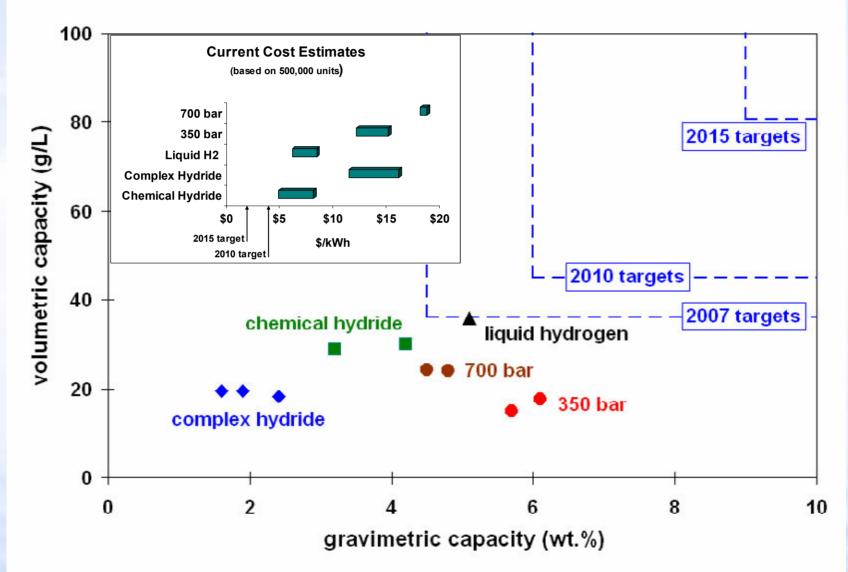
Today's gasoline tank system:

Reminder: <u>System</u> Targets



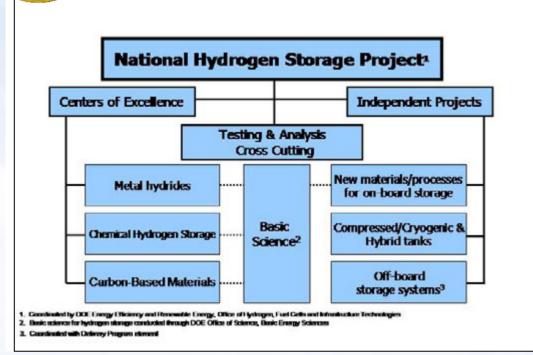
System includes material, tank, and balance of plant- e.g. insulation, sensors, regulators, first charge, any byproducts/reactants, etc.

Material capacities must be higher!

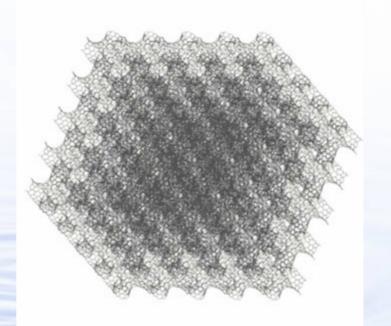

Energy Density (Volumetric Capacity) is Critical!

See http://www.eere.energy.gov/hydrogenandfuelcells/storage/current_technology.html

Current Status


No storage technology meets 2010 or 2015 targets

Note: Estimates from developers. To be periodically updated.


Costs exclude regeneration/processing. Complex hydride system data projected. Data points include analysis results.

Strategy and Program Plans

- Centers of Excellence (\$5-6M/yr) plus independent projects, launched at \$150 M over 5 years (plan- subject to appropriations)
- ~ 40 universities, 15 companies, 10 federal labs (including 17 new BES awards)
- Diverse portfolio addresses NAS
 recommendations

- Focus is materials-based technologies
 - Systematic approach
 - Robust theory/simulation and rapid screening
 - Tailor properties
 - Capacity, T, P, energies

Yacobsen, Rice U.

"...DOE should continue to elicit new concepts and ideas, because success in overcoming the major stumbling block of on-board storage is critical for the future of transportation use of fuel cells." (NRC Report,p.44)

Strategy & Results

Broad Portfolio Focused on Materials Technologies

Challenges are technology specific: Pros and Cons for each Tanks (to 10,000 psi), Chemical hydrides (CH), Metal Hydrides (MH), Carbon/Sorbents (S)

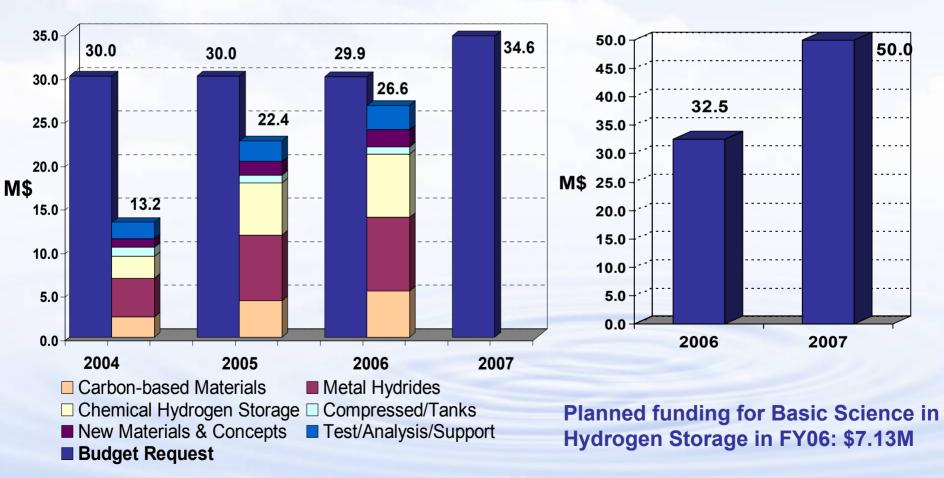
	Key 2010 Targets:	Tanks	СН	МН	S
The Construction from the Construction of the	Volume (1.5 kWh/L)	Н	М	М	M/H
	Weight (2.0 kWh/kg)	М	М	M/H	М
	Cost (\$4/kWh)	M/H	M/H*	M/H	M/H
RD&D Plan: Tasks in each area www.eere.energy.gov/ hydrogenandfuelcells	Refueling Time (3 min, for 5 kg)	L	L	M/H	М
Thermal Mgmt: Key Issues for MH (CH, C)	Discharge Kinetics (0.02 g/s/kW)	L	М	М	М
	Durability (1000 cycles)	L	М	М	М

H = High (Significant challenge)

H = Medium/High

M = Medium

= Low (minimal challenge)


For CH, MH and S- assessment based on potential to meet targets, though systems not yet demonstrated in most cases. *For CH: Storage system may meet cost but fuel cost of \$2-\$3/kg is challenge for CH regeneration.

Hydrogen Storage Budget

DOE- EERE FY2007 Budget Request = \$34.6M FY2006 Funding = \$26.6M

DOE- Office of Science FY2007 Budget Request = \$50.0M FY2006 Funding = \$32.5M

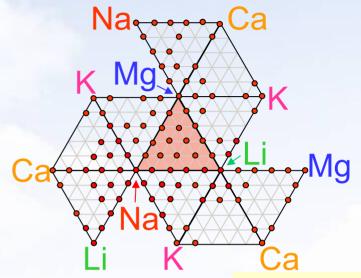
Results: Examples of Progress (2005-2006) New materials with higher capacities being found

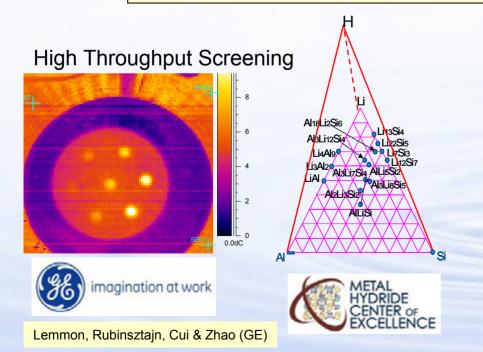
Material Capacities for Hydrogen Storage

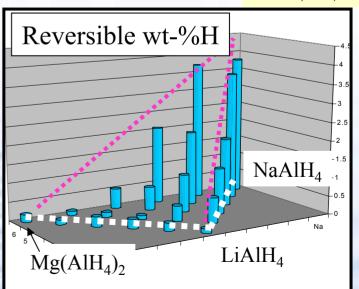
Advanced Metal Hydrides	Chemical H₂ Storage	Carbon/ Sorbents & New Materials
Li Mg Amides ~5.5wt%, ~2.8 kWh/L (>200 C) Alane ~7-10 wt%, ~5 kWh/L (<150 C) Li borohydrides >9 wt%, ~3.5 kWh/I (~350 C) Destabilized Binary hydrides ~5-7wt%, ~2-3 kWh/L (250 C) LiMgAlane, M-B-N-H ~ 7-8.8 wt%, > 1.3 kWh/L (~150-340 C)	Phenanthraline/ organic liquids ~7 wt%,~1.8 kWh/L (>150 C) Ammonia Borane/Scaffolds ~6 wt%,~2-4 kWh/L (<100 C)	Metal/carbon hybrids, MetCars 6 to > 8wt%*, ~1.3* kWh/l (*theory) Bridged catalysts IRMOF-8 ~1.8 wt.%,~0.3 kWh/L (room T) Metal-Organic Frameworks IRMOF-177 ~7 wt%, ~1 kWh/L (77 K)

Note: Material capacities only. No balance of plant. Estimates for volumetric capacities.

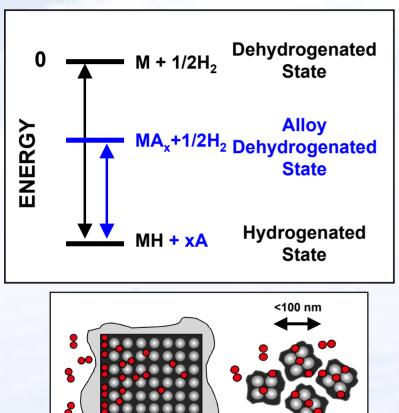
We are excited by these results but there are still issues... Next steps: Operability (Temperature, pressure, kinetics, etc.) XY + n H₂ endathermic

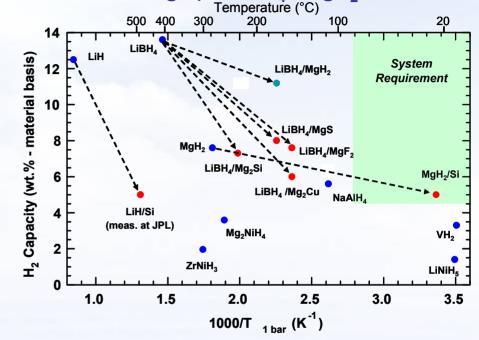

XYH₂


Results: Advanced Metal Hydrides


- Rapid Screening: Theory and Experiment
- More than <u>980 ternary phase systems</u> searched (alkali/alkaline earth alanates)
- No stable mixtures found under UOP conditions (~90 atm)

<u>Preliminary Assessment</u> No alanate mixtures likely to meet DOE targets


Sachtler, et al, UOP

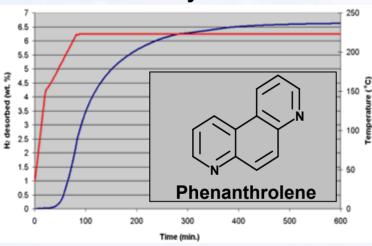

Results: Destabilized hydrides and nano-engineering

E.g., New system (11.4 wt. % and 0.095 kg/L) – $LiBH_4$ / MgH₂

Long H-diffusion distances in bulk materials: reduced H-exchange rate Short H-diffusion distances in nanoparticles: fast hydrogen exchange

Vajo, Olsen, et al, HRL

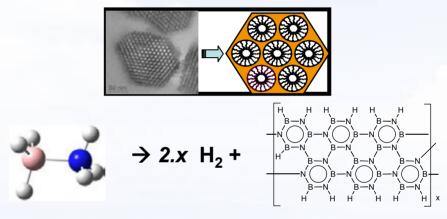
- Demonstrated "destabilization" to enable lower T
 - Showed ~9-10 wt.% LiBH₄/MgH₂
 - Can reduce T by ~ 240 C
 - But kinetics slow
- Next steps: Enhance kinetics by nanoengineering



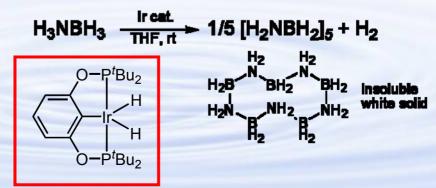
Metal Hydride Center

Results: Chemical Hydrogen Storage

- Organic liquids: >7 wt.%, 69 g/L
 - 1.5 wt% more than FY05
 - > 100 catalysts screened
 - > Dehydrogenation with 10x less Pt in catalysts



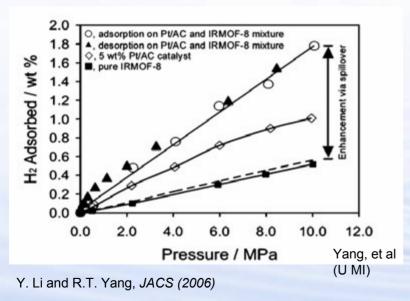
Cooper, Pez, et al, Air Products


Rapid dehydrogenation catalysts demonstrated

U. of Washington, Chemical CoE

- NH₃BH₃ in mesoporous scaffolds:
 - >6 wt% material capacity
 - H₂ release at < 80 C
 - Reduced borazine formation

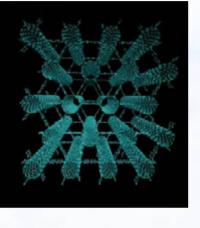
Autrey, Gutowski, et al, PNNL Chemical CoE

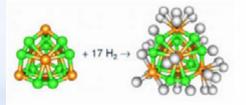

Original catalyst development- Jensen, et al (U HI)

Results: Carbon and Sorbents

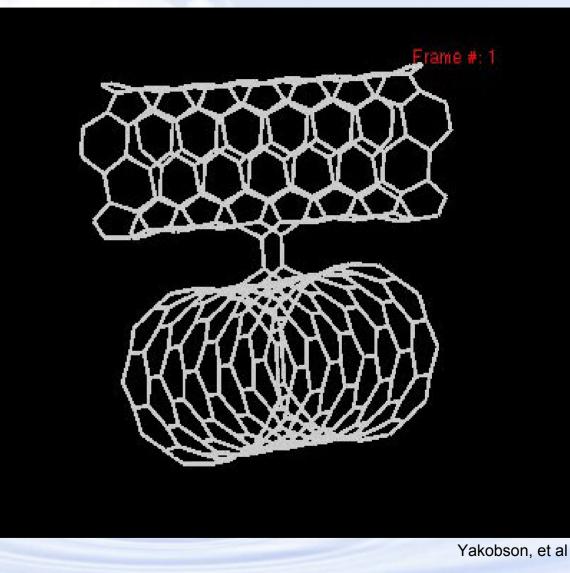
Carbon Center & New Materials:

- >7 wt.% at 77K shown on MOFs (> 30 g/L)
- Several cycles reversibility shown
- Four-fold enhancement in H₂ storage via "spillover"




Results: Designing tailored nanostructures

Yakobson, Ding, Lin Rice University Carbon Center



CNT "Carpet" Tour, et al, Rice U.

> NREL-Carbon Center Potential for 6.1-7.7 wt%

MetCars Y. Zhao, A.C. Dillon, Y.-H. Kim, M.J. Heben, S.B. Zhang, in prep

Theoretical modeling conducted to predict optimum structures and storage capacities

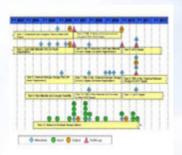
Results: Testing and Analysis

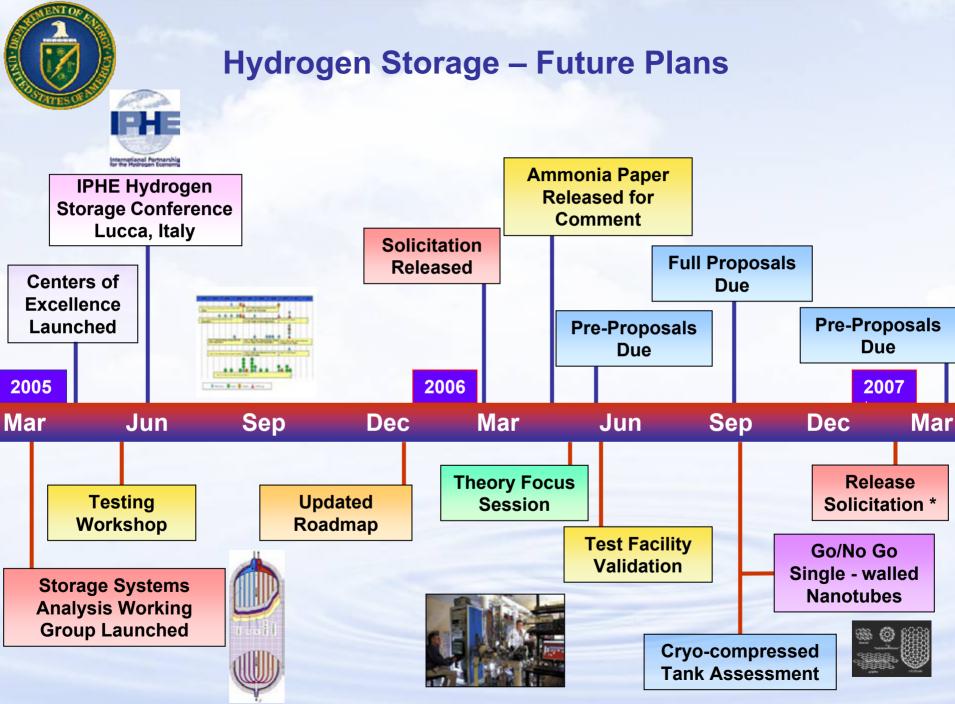
Analysis & modeling underway to determine material property requirements to meet system targets. Preliminary results shown.


Test facility completed, SwRI

R. Page, M. Miller, SwRI

700 04 50% Market Share 600 ŕ Distribution MJ/kg Storage 500 Production ġ, 0.6 400 Lo C 300 2 206 Fnel 200 Din 100 187 175 175 175 175 cH2-350bar cH2-700bar 1 H2 SBH MaH2 Preliminary estimates based on developer regeneration efficiency analyses


Overall efficiency analyses underway (Coordination with H2A)


Programmatic Accomplishments

- IPHE Hydrogen Storage
 Conference
 - Leveraging global activities
 - See www.iphe.net
- Expanded Basic Science
- Theory Focus Session
 - May 18, 2006
- Updated Targets & Multiyear Plan
 - New versions on web
- Addressing NAS recommendations (e.g. revolving solicitation for new concepts)

- Water Availability Model
 - For hydrolysis
- Paper on Ammonia
 - Draft on web for public comment
- Updated Roadmap & Targets
 - New versions on web
- Joint Tech Team meetings
 - Defining requirements

*Subject to appropriations

Current Solicitations

- 1) Applied Research and Development (EERE)
- Up to \$6M total (\$2M planned in FY07, subject to appropriations)
 Complements current DOE Centers of Excellence & existing Independent projects:
 - Material discovery
 - Engineering Science (including materials safety properties)
 - Systems, safety and environmental analyses
- 3-6 awards at \$200-400k/yr for 2-5 years
- Preproposals due <u>June 7</u>

- 2) Basic Science (Office of Science, BES)
- Up to \$52.5M total (\$17.5M/yr starting in FY07, subject to appropriations)
 - Novel Materials for Hydrogen Storage
 - Functional Membranes
 - Nanoscale Catalysts
- Preproposals due <u>July 6</u>

See http://www.grants.gov or follow links from www.hydrogen.energy.gov

Summary

- New Materials & Concepts are critical- address volumetric capacity, T, P, kinetics, etc. (not just wt. %!)
- Basic science is essential to develop fundamental understanding & complements applied research & development
- Engineering issues need to be considered
 - System issues, thermal mgmt, safety, refueling, testing, etc
- Examples of Essential Capabilities:
 - Modeling & Analysis
 - Combinatorial/high throughput methods
 - Material properties measurements
 - Standardized & accurate testing

For More Information

Hydrogen Storage Team

Sunita Satyapal, Team Leader

Overall Storage/ FreedomCAR Tech Team/International 202-586-2336 sunita.satyapal@ee.doe.gov

Carole Read

Grace Ordaz Chemical Hydrides,Chemical Hydrogen Storage Center of Excellence 202-586-8350 grace.ordaz@ee.doe.gov

George Thomas*

On Assignment to DOE *retired, Sandia 202-586-8058 george.thomas@ee.doe.gov

Metal Hydrides, Metal Hydride Center of Excellence

> 202-586-3152 carole.read@ee.doe.gov

New Hire

Carbon/Sorbents, Carbon

Center of Excellence see www.eere.energy.gov/hydrogenandfuelcells/

(closes May 19)

Jesse Adams 303-275-4954 jesse.adams@go.doe.gov James Alkire 303-275-4795 jim.alkire@ee.doe.gov Paul Bakke 303-275-4916 paul.bakke@go.doe.gov

Basic Science: Harriet Kung (harriet.kung@science.doe.gov)

or

Tim Fitzsimmons (tim.fitzsimmons@science.doe.gov)

www.hydrogen.energy.gov

Additional Information

Hydrogen Storage "Grand Challenge" Partners

Centers of Excellence

Meta	al H	lyd	rid	le
	Ce	nte	er	

National Laboratory: Sandia-Livermore

Industrial partners: General Electric HRL Laboratories Intematix Corp.

Universities:

CalTech Stanford Pitt/Carnegie Mellon Hawaii Illinois Nevada-Reno Utah

Federal Lab Partners:

Brookhaven JPL NIST Oak Ridge Savannah River Carbon Materials Center

- National Laboratory: NREL
- Industrial partners: Air Products & Chemicals
- Universities: CalTech Duke Penn State Rice Michigan North Carolina Pennsylvania


Federal Lab Partners: Lawrence Livermore NIST Oak Ridge

Chemical Hydrogen Center National Laboratories: Los Alamos Pacific Northwest Industrial partners: Intematix Corp.

Internatix Corp. Millennium Cell Rohm & Haas US Borax

Universities: Northern Arizona Penn State Alabama California-Davis UCLA Pennsylvania Washington

Independent Projects

New Materials & Concepts Alfred University Carnegie Institute of Washington **Cleveland State University** Michigan Technological University TOFTEC **UC-Berkelev** UC-Santa Barbara University of Connecticut University of Michigan University of Missouri **High-Capacity Hydrides** UTRC UOP Savannah River NL **Carbon-based Materials** State University of New York Gas Technology Institute UPenn & Drexel Univ. **Chemical Hydrogen Storage** Air Products & Chemicals RTI Millennium Cell Safe Hydrogen LLC **OffBoard, Tanks, Analysis & Testing** Gas Technology Institute (w/Delivery) Lawrence Livermore Quantum Argonne Nat'l Lab & TIAX LLC SwRI