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Thin-Film, Metal-Supported High-Performance and 

Durable Proton-Solid Oxide Electrolyzer Cell

Tianli Zhu, Raytheon Technologies Research Center

Partner organizations: UConn, ElectroChem Ventures 

Project Vision
Develop a highly efficient and cost competitive high

temperature electrolysis for H2 generation, by a thin-

film, high efficiency and durable metal-supported solid

oxide electrolysis cell (SOEC) based on proton-

conducting electrolyte at targeted operating

temperatures of 550-650ºC.

Project Impact
Accelerate the commercialization of high-temperature

electrolysis, and advance reversible-SOFC

technology for renewable-energy applications.

Project Overview

Thin film deposition for electrolyte

Award # EE0008080

Start/End Date 10/1/2017–

3/31/2021

Total project value

Cost share

$1.25 M

20%

Proton conducting electrolyzer

550-650 C
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Approach- Summary

Project Motivation Key Impact

Partnerships
• University of Connecticut (Prof. Radenka

Maric): Cell Fabrication (RSDT)

• UTRC SPS Vendor/PW: Suspension 

Plasma Spray (SPS)

• ElectroChem Ventures (consultant): 

Metal-supported cell design

• EMS nodes: LBNL, INL & NREL

Barriers
-. Low cost deposition of ceramic layers:
Deposition process without high T sintering: 

RSDT, SPS, LBNL co-sintering/metal infiltration

-. Metal alloy durability
Proper selection of metal alloys and protective 

coatings through durability tests

-. Steam electrode and electrolyte stability
INL’s high-throughput methodology; molecular 

dynamics modeling 

Metric State of the Art Proposed

SOEC

Performance

1 A/cm2 at

1.4 V at 800 ºC

1 A/cm2 at

1.4 V at 650 ºC

SOEC

Durability

(1-4)% per

1000 h

<0.4% per

1000 h

(~4 mV per

1000 h)

H2 production

Cost
>$4/kg H2 $2/kg H2

Anode supported p-SOFC button cell 

(ARPA-E REBELs)
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Approach- Integrating Manufacturing, 
Material & Modeling

Phase 2: 1) develop SOEC metal cell through plasma spray and co-sintering; 2)

demonstrate metal cell performance (target: 0.9 V OCV & >0.8A/cm2 at 1.4 V and T≤650 C);

3) performance optimization of BYZ-based cell through material optimization; 4)

continuing development of p-SOEC model
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Relevance & Impact

Project Objectives
Develop highly efficient and cost competitive high temperature electrolysis for H2

generation, by a high efficiency and durable metal-supported solid oxide electrolysis

cell (SOEC) based on proton-conducting electrolyte at targeted operating

temperatures of 550-650ºC. Focus on developing a low cost, scalable fabrication of

metal-supported cells and further material optimization for an efficient & durable p-

SOEC.

Project Impact
Metric State of the Art Project Target

SOEC Performance 1 A/cm2 at 1.4 V at 800 ºC

1.0 A/cm2 at 1.4 V on button cells at T

≤ 650 ºC (demonstrated in Phase 1);

0.8 A/cm2 at 1.4 V on metal-supported

cells at T ≤ 650 ºC

SOEC Durability (1-4)% per 1000 h
<1% per 1000 h

(<10 mV per 1000 h)

H2 production Cost >$4/kg H2

$2/kg H2 based on cost analysis in

Phase 1
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Accomplishments: SPS Anode on Metal 
Supports

Target composition: 60/40 NiO/BYZ
As coated

After reduction

Theoretical 

(%)

SEM

Ni 34.6 38.1

Ba 6.3 6.1

Zr 5.0 5.3

Y 1.3 1.4

O 52.8 49.0

23% porosity

Produced a fully reduced anode with desired composition and porosity.
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Accomplishments: SPS Anode on Porous 
Metal Supports

Demonstrated ~20 µm SPS NiO coating on porous metal sheet

Next step: coat porous metal sheet with NiO+BYZ electrode.
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Accomplishements: SPS Electrolyte Optimization 
in Progress

Phase 1

16% porosity

Phase 2 electrolyte layer optimization focuses on developing a fully dense layer. 

Desired electrolyte composition by SPS was demonstrated in Phase 1

Phase 2 first trial

~10% porosity
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Accomplishment: Metal-Supported Cell 
Fabrication by Co-sintering

Electrolyte

Sintering aid lowers sintering temp 100°C to 1350°C, to mitigate Si and Cr migration 

from metal support
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Thickness can be optimized

Correct BZCYYb phase is expected at 
elode/elyte interface for thick electrode

BZCYYb + 2wt% MnO
on P434L (PII metal cast) 1350°C

Good elyte densification
Need to eliminate cracks  tapecasting

Painted bilayer Painted trilayer

Tapecast bilayer

Need thinner, high quality tape  vendor

Tapecast bilayer
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Accomplishment: Metal-Supported Cell 
Fabrication by Co-sintering

Electrolyte
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stainless steel

Matching shrinkage of BCZYYb and LBNL metal support

Now preparing Metal/BCZYYb (MnO) laminates

If shrinkage matching needs further optimization:

- precoarsen BCZYYb to delay sintering to >1050°C

- smaller metal particles to enhance sintering

Good match with 2wt% MnO

Effective matching with Mn-oxide sintering aid
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Accomplishment: Faraday Efficiency Study at INL

FE on BCZYYb7111, BCZYYb4411 and BZY20 electrolyte have been measured at different 
temperatures, steam concentrations and electrolysis voltages. 

Identified effect of compositions of doped-BYZ on Faraday Efficiency

Results show the trend: 
PH2O↑ → FE↑

V↑ → FE↓
T↓ → FE↑

Operating conditions Materials 

1. BZY20

2. BCZYYb4411

3. BCZYYb7111

Ce↓ → FE↑

Extensive efforts in densifying BZY20 at 
1500 oC without sintering aids 

FE results at 600 oC

Dense BZY20 film 
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10% H2O

15% H2O

40% H2O
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40% H2O
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Accomplishment: Faraday Efficiency Study at INL

INL’s results show similar trend in recent 

literature based on BaZr0.7Ce0.2Y0.1O3 electrolyte
O2 + H2O 

H2

H+ Ba(Zr,Ce,Y,Yb)O3 electrolyte

O2 side: hole formation
1

2
𝑂2 + 𝑉𝑂

·· → 𝑂𝑂
× + ℎ

·

2𝐶𝑒𝐶𝑒
× + 𝑂𝑂

× → 𝑉𝑂
··+2𝐶𝑒𝐶𝑒

′ +
1

2
𝑂2

H2 side: electron formation

𝜎𝑒 = 𝜎𝑒
°𝑒𝑥𝑝

𝐹 𝐸° − 𝐸

𝑅𝑇
= 𝜎𝑒

°𝑒𝑥𝑝 −
𝐹𝐸

𝑅𝑇

Norby et al, Nat. Mater. 2019

One of Mitigation strategies

Mechanism of electronic leakage:

𝐻2𝑂 + 𝑉𝑂
·· + 𝑂𝑂

× → 2𝑂𝐻𝑂
•

Hydration reaction:

Proton formation reaction competes with hole 

formation to effectively decrease hole concentration 

High steam concentration 

results in high FE



HydroGEN: Advanced Water Splitting Materials 13

Options for higher Electrolysis Performance 

Effective electrolysis current density is the product of apparent current density and FE, 
which represents the hydrogen production rate. 

𝒊𝒆𝒇𝒇 = 𝒊𝒂𝒑𝒑 × 𝑭𝑬

BCZYYb4411: (e.g., at 1.45 V and 600 oC)
ieff= 1.40 A cm-2 × 75.2% = 1.05 A cm-2

BZY20: 
ieff= 0.75 A cm-2 × 96.0% = 0.72 A cm-2

Potential Strategies on improving BYZ-based SOEC performance:

#1: Cell manufacturing strategies incorporating different material selection

#2: Improving conductivity of BZY20-based electrolyte by element doping (Redox) and 

sintering process

#3: Optimizing operating conditions for BCZYYb4411 electrolyte 

A new and critical criteria for evaluating the feasibility of electrolyte in p-SOECs should be 
established based on the consideration in Faraday efficiency and the cell activity. 
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Thermal/Electrochemical Modeling of SOEC 
(NREL)

Developing electrochemical model for current leakage prediction

Steam-Electrode:
Species: H2O, O2,  Equation: Fick’s Law

BCs: Species concentrations

Interface + Electrolyte:
Species: H+, h., V.., Ox

Equation: charge, ion, hole, vacancy
BCs: Equilibrium and defect chemistry.

Model based on a recent paper on H-SOFC current leakage*

H2-Electrode
Species: H2 , Equation: Fick’s Law

BCs: RHS: 𝐻2 = 𝐻2 𝑏𝑢𝑙𝑘 +
𝜏

2𝐹𝐷𝑒𝑓𝑓
𝐽

Dense Electrolyte

Porous Steam Electrode

Porous Hydrogen Electrode

+

+

e-

Flow Channel

Flow Channel

+

Jext

Jleak

* Reference:[1] Zhang, J. H., Lei, L. Bin, Liu, D., Zhao, F. Y., Ni, M., and Chen, F., “Mathematical Modeling of a 
Proton-Conducting Solid Oxide Fuel Cell with Current Leakage,” J. Power Sources, 400(2018), pp. 333–340.  
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Model Results: Leakage Current

‣ Leakage current occurs in the H2E as electrons and holes re-encounter each other 
after leaving the steam electrode:

OO
x ⇌ OO

• + e′

‣ This can be modeled using a mass-action type source term, which allows the 
leakage current to be expressed as:

𝑖𝑙𝑒𝑎𝑘 =
𝐹

𝑆𝐶
𝑘𝑒ℎ,𝑓 − 𝑘𝑒ℎ,𝑏

𝑖𝑆𝐶
𝐹

OO
•

where 𝑘𝑒ℎ,𝑓 is a tuning parameter to be determined from experimental data

‣ Leakage becomes worse at higher current densities, and reduces the Faradaic 
efficiency of the cell
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Collaborations

Low cost cell 
fabrication

Establish 
Electrochemical 

modeling

Material development 
for performance and 

durability

Provide feedback on 

material selection and 

fabrication

Monthly telecom to exchange ideas and results 
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Proposed Work

• Metal-supported cell fabrication (UTRC/LBNL)

– Continuing optimization of SPS process for a fully dense electrolyte.

– Fabricate co-sintered bilayer and full button cells with tapecasting for 

thinner and crack-free layers. 

– Fabricate metal cells and demonstrate performance

• Continue performance optimization of BYZ-based cells (INL)

• Further improving p-SOEC current leakage model and validating 

model prediction with the experiment results (NREL/INL)
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Summary

• Metal-supported cell fabrication

– Demonstrated porous electrode layer with desired porosity and composition 

by SPS. 

– Further optimization of SPS electrolyte is in progress.

– Sintering aid for lower T co-sintering was identified.

– Co-sintered bilayer and full button cells to be fabricated with tapecasting for 

thinner and crack-free layers. 

• Performance optimization of BYZ-based cells (INL)

– FE decreased with increasing Ce doping in BYZ. There is probably an 

optimum Ce concentration to achieve high performance and high efficiency. 

– A higher FE can be achieved through higher steam concentration,  

composition optimization, and cell layer design.  

• Established p-SOEC current leakage model, model predicted FE vs. 

current density trend was consistent with the experiment results. 
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