

Thin-Film, Metal-Supported High-Performance and Durable Proton-Solid Oxide Electrolyzer Cell

Raytheon Technologies Research Center Tianli Zhu May, 2020

Project ID P154

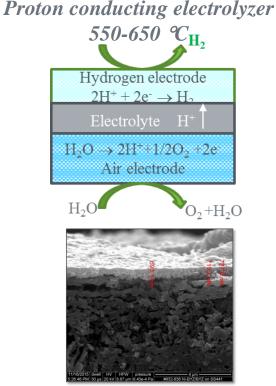
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Overview

Thin-Film, Metal-Supported High-Performance and Durable Proton-Solid Oxide Electrolyzer Cell

Tianli Zhu, Raytheon Technologies Research Center Partner organizations: UConn, ElectroChem Ventures

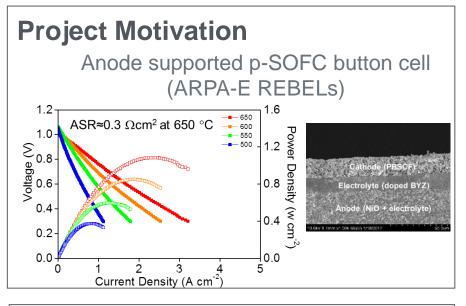

Project Vision

Develop a highly efficient and cost competitive high temperature electrolysis for H_2 generation, by a thinfilm, high efficiency and durable metal-supported solid oxide electrolysis cell (SOEC) based on protonconducting electrolyte at targeted operating temperatures of 550-650°C.

Project Impact

Accelerate the commercialization of high-temperature electrolysis, and advance reversible-SOFC technology for renewable-energy applications.

Award #	EE0008080
Start/End Date	10/1/2017- 3/31/2021
Total project value Cost share	\$1.25 M 20%



Thin film deposition for electrolyte

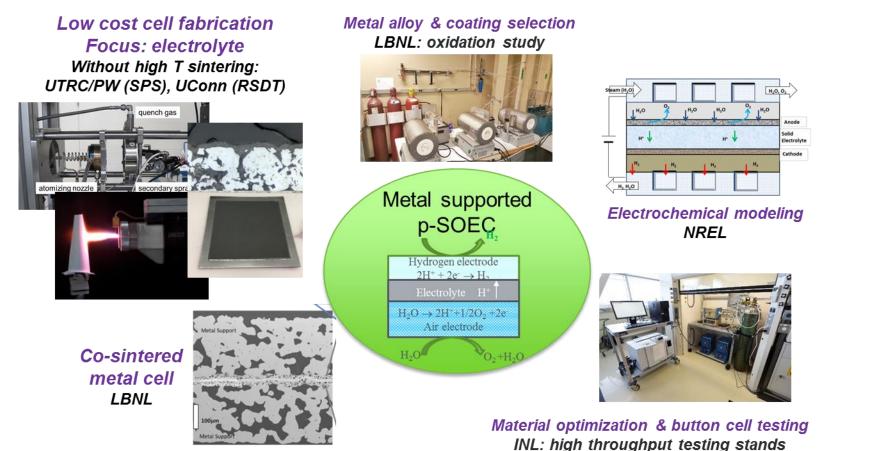
Approach- Summary

Barriers

- -. Low cost deposition of ceramic layers: Deposition process without high T sintering: RSDT, SPS, LBNL co-sintering/metal infiltration
- -. Metal alloy durability
- Proper selection of metal alloys and protective coatings through durability tests
- -. Steam electrode and electrolyte stability INL's high-throughput methodology; molecular dynamics modeling

Key Impact

Metric	State of the Art	Proposed
SOEC Performance	1 A/cm ² at 1.4 V at 800 °C	≥1 A/cm ² at 1.4 V at 650 °C
SOEC Durability	(1-4)% per 1000 h	<0.4% per 1000 h (~4 mV per 1000 h)
H ₂ production Cost	>\$4/kg H ₂	\$2/kg H ₂


Partnerships

- University of Connecticut (Prof. Radenka Maric): Cell Fabrication (RSDT)
- UTRC SPS Vendor/PW: Suspension Plasma Spray (SPS)
- ElectroChem Ventures (consultant): Metal-supported cell design
- EMS nodes: LBNL, INL & NREL

Approach- Integrating Manufacturing, Material & Modeling

Phase 2: 1) develop SOEC metal cell through plasma spray and co-sintering; 2) demonstrate metal cell performance (target: 0.9 V OCV & >0.8A/cm² at 1.4 V and T \leq 650 °C); 3) performance optimization of BYZ-based cell through material optimization; 4) continuing development of p-SOEC model

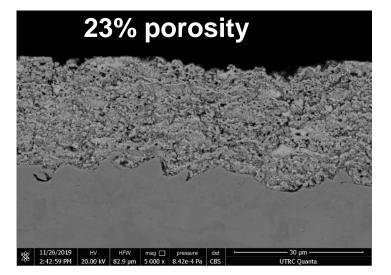
Raytheon Technologies

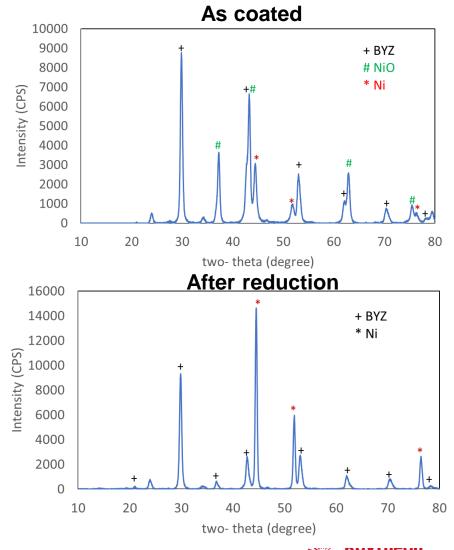
Project Objectives

Develop highly efficient and cost competitive high temperature electrolysis for H₂ generation, by a high efficiency and durable metal-supported solid oxide electrolysis cell (SOEC) based on proton-conducting electrolyte at targeted operating temperatures of 550-650°C. Focus on developing a low cost, scalable fabrication of metal-supported cells and further material optimization for an efficient & durable p-SOEC.

Project Impact

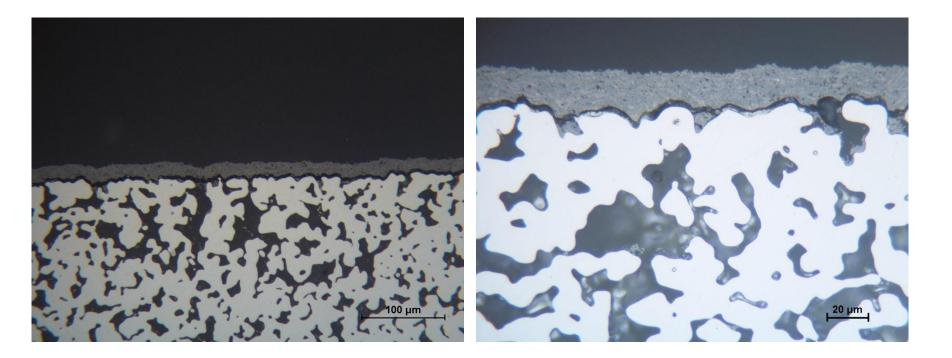
Metric	State of the Art	Project Target
SOEC Performance	1 A/cm ² at 1.4 V at 800 °C	≥1.0 A/cm ² at 1.4 V on button cells at T ≤ 650 °C (demonstrated in Phase 1); ≥0.8 A/cm ² at 1.4 V on metal-supported cells at T ≤ 650 °C
SOEC Durability	(1-4)% per 1000 h	<1% per 1000 h (<10 mV per 1000 h)
H ₂ production Cost	>\$4/kg H ₂	$A_2 \ {\rm H_2}$ based on cost analysis in Phase 1




Accomplishments: SPS Anode on Metal Supports

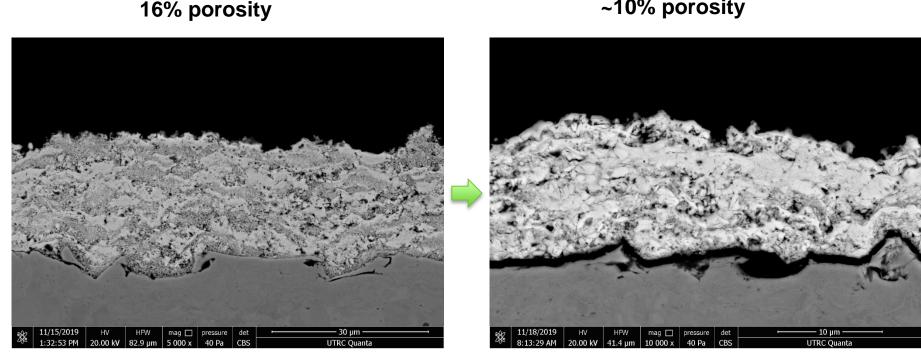
Produced a fully reduced anode with desired composition and porosity.

Target composition: 60/40 NiO/BYZ


	Theoretical (%)	SEM
Ni	34.6	38.1
Ba	6.3	6.1
Zr	5.0	5.3
Υ	1.3	1.4
0	52.8	49.0

Accomplishments: SPS Anode on Porous Metal Supports

Demonstrated ~20 µm SPS NiO coating on porous metal sheet Next step: coat porous metal sheet with NiO+BYZ electrode.

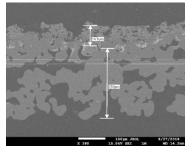


HydroGEN: Advanced Water Splitting Materials

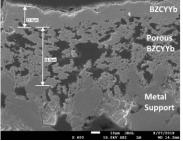
Accomplishements: SPS Electrolyte Optimization in Progress

Phase 2 electrolyte layer optimization focuses on developing a fully dense layer. Desired electrolyte composition by SPS was demonstrated in Phase 1

Phase 2 first trial ~10% porosity

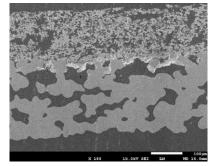

Phase 1

Accomplishment: Metal-Supported Cell Fabrication by Co-sintering

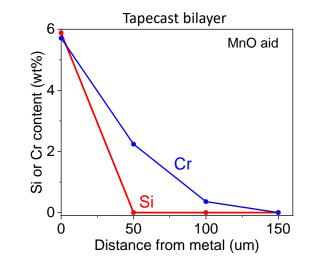

Sintering aid lowers sintering temp 100°C to 1350°C, to mitigate Si and Cr migration from metal support

BZCYYb + 2wt% MnO on P434L (PII metal cast) 1350°C

Painted bilayer



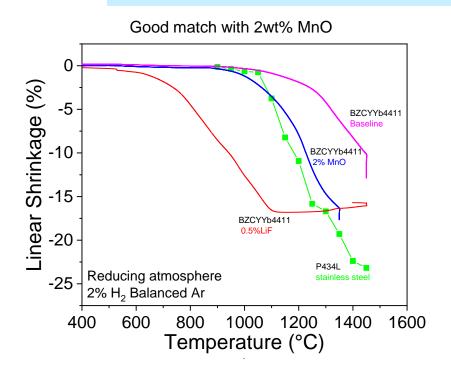
Painted trilayer

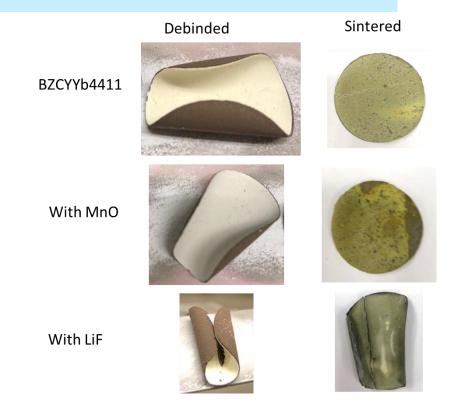


Good elyte densification Need to eliminate cracks \rightarrow tapecasting

Tapecast bilayer

Need thinner, high quality tape \rightarrow vendor


Thickness can be optimized


Correct BZCYYb phase is expected at elode/elyte interface for thick electrode

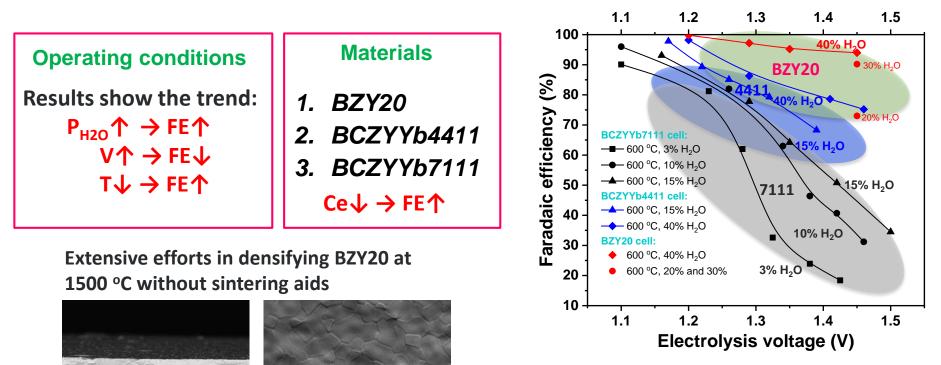
Accomplishment: Metal-Supported Cell Fabrication by Co-sintering

Matching shrinkage of BCZYYb and LBNL metal support

Now preparing Metal/BCZYYb (MnO) laminates

If shrinkage matching needs further optimization:

- precoarsen BCZYYb to delay sintering to >1050°C
- smaller metal particles to enhance sintering


Effective matching with Mn-oxide sintering aid

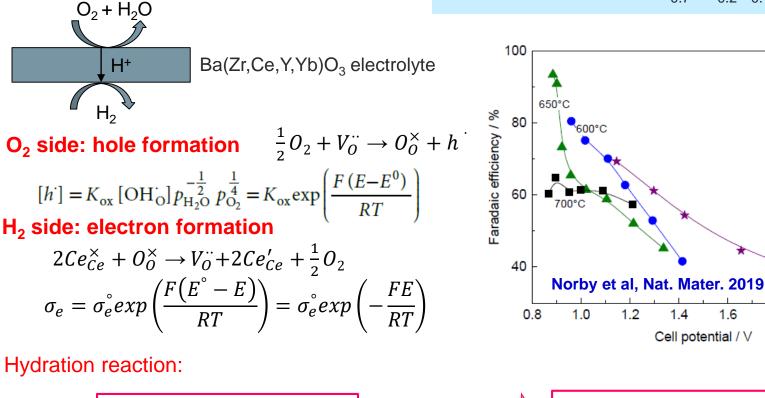
Accomplishment: Faraday Efficiency Study at INL

Identified effect of compositions of doped-BYZ on Faraday Efficiency

FE on BCZYYb7111, BCZYYb4411 and BZY20 electrolyte have been measured at different temperatures, steam concentrations and electrolysis voltages.

FE results at 600 °C

Dense BZY20 film



HydroGEN: Advanced Water Splitting Materials

Accomplishment: Faraday Efficiency Study at INL

Mechanism of electronic leakage:

INL's results show similar trend in recent literature based on BaZr_{0.7}Ce_{0.2}Y_{0.1}O₃ electrolyte

High steam concentration results in high FE

1.4

Cell potential / V

1.2

One of Mitigation strategies

1.6

550°C

1.8

2.0

2.2

Proton formation reaction competes with hole

formation to effectively decrease hole concentration

 $H_2O + V_0^{\circ} + O_0^{\times} \rightarrow 2OH_0^{\bullet}$

d)

Options for higher Electrolysis Performance

A new and critical criteria for evaluating the feasibility of electrolyte in p-SOECs should be established based on the consideration in Faraday efficiency and the cell activity.

Effective electrolysis current density is the product of apparent current density and FE, which represents the hydrogen production rate.

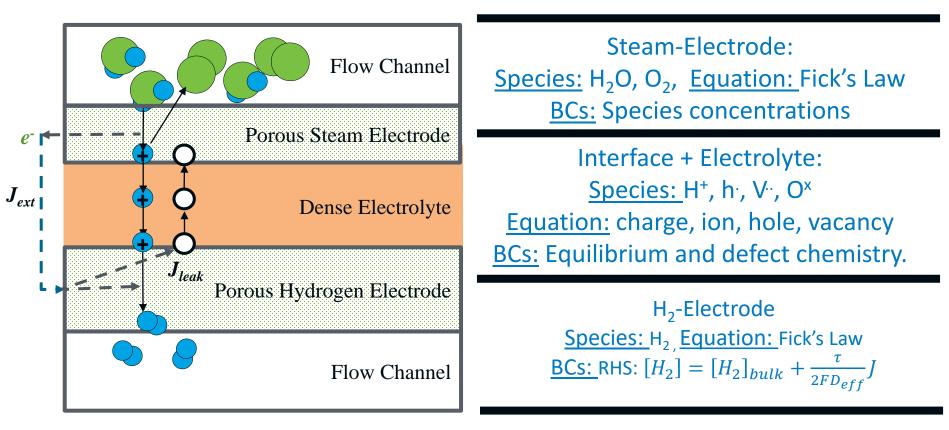
 $i_{eff} = iapp \times FE$

BCZYYb4411: (e.g., at 1.45 V and 600 °C) i_{eff}= 1.40 A cm⁻² × 75.2% = 1.05 A cm⁻² **BZY20:**

 i_{eff} = 0.75 A cm⁻² × 96.0% = 0.72 A cm⁻²

Potential Strategies on improving BYZ-based SOEC performance:

#1: Cell manufacturing strategies incorporating different material selection


#2: Improving conductivity of BZY20-based electrolyte by element doping (Redox) and sintering process

#3: Optimizing operating conditions for BCZYYb4411 electrolyte

Thermal/Electrochemical Modeling of SOEC (NREL)

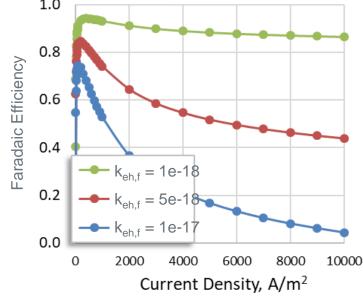
Developing electrochemical model for current leakage prediction

Model based on a recent paper on H-SOFC current leakage*

* Reference:[1] Zhang, J. H., Lei, L. Bin, Liu, D., Zhao, F. Y., Ni, M., and Chen, F., "Mathematical Modeling of a Proton-Conducting Solid Oxide Fuel Cell with Current Leakage," J. Power Sources, 400(2018), pp. 333–340.

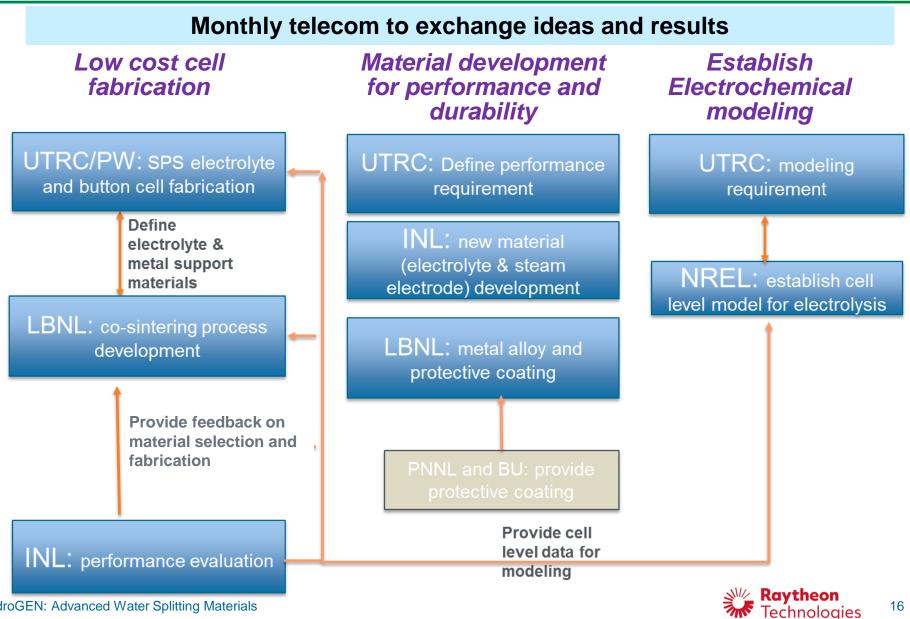
Model Results: Leakage Current

Leakage current occurs in the H₂E as electrons and holes re-encounter each other after leaving the steam electrode:


$$0_0^X \rightleftharpoons 0_0^{\bullet} + e'$$

This can be modeled using a mass-action type source term, which allows the leakage current to be expressed as:

$$I_{leak} = \frac{F}{S_C} \left(k_{eh,f} - k_{eh,b} \frac{iS_C}{F} [0_0^{\bullet}] \right)$$


where $k_{eh,f}$ is a tuning parameter to be determined from experimental data

Leakage becomes worse at higher current densities, and reduces the Faradaic efficiency of the cell 1.0

HydroGEN: Advanced Water Splitting Materials

- Metal-supported cell fabrication (UTRC/LBNL)
 - Continuing optimization of SPS process for a fully dense electrolyte.
 - Fabricate co-sintered bilayer and full button cells with tapecasting for thinner and crack-free layers.
 - Fabricate metal cells and demonstrate performance
- Continue performance optimization of BYZ-based cells (INL)
- Further improving p-SOEC current leakage model and validating model prediction with the experiment results (NREL/INL)

- Metal-supported cell fabrication
 - Demonstrated porous electrode layer with desired porosity and composition by SPS.
 - Further optimization of SPS electrolyte is in progress.
 - Sintering aid for lower T co-sintering was identified.
 - Co-sintered bilayer and full button cells to be fabricated with tapecasting for thinner and crack-free layers.
- Performance optimization of BYZ-based cells (INL)
 - FE decreased with increasing Ce doping in BYZ. There is probably an optimum Ce concentration to achieve high performance and high efficiency.
 - A higher FE can be achieved through higher steam concentration, composition optimization, and cell layer design.
- Established p-SOEC current leakage model, model predicted FE vs. current density trend was consistent with the experiment results.

Selected Publications & Presentations

Publications:

- R. Wang, Z. Sun, J.-P, Choi, S. N. Basu, J.W. Stevenson, M.C. Tucker, Ferritic stainless steel interconnects for protonic ceramic electrochemical cell stacks: Oxidation behavior and protective coatings, International Journal of Hydrogen Energy, 47 (2019) 25297-25309 <u>https://doi.org/10.1016/j.ijhydene.2019.08.041</u>
- E. Dogdibegovic, F. Shen, R. Wang, I. Robinson, G.Y. Lau, M.C. Tucker, Progress in Metal-Supported Solid Oxide Fuel Cells and Electrolyzers With Symmetric Metal Supports and Infiltrated Electrodes, ECS Transactions, 91 (1) 877-855 (2019) 10.1149/09101.0877ecst
- R. Wang, E. Dogdibegovic, G.Y. Lau, M.C. Tucker, Metal-Supported Solid Oxide Electrolysis Cell with Significantly Enhanced Catalysis, Energy Technology, 7 (2019) 1901154 <u>https://doi.org/10.1002/ente.201801154</u>
- R. Wang, G.Y. Lau, D. Ding, T. Zhu, and M.C. Tucker, Approaches for co-sintering metal-supported proton-conducting solid oxide cells with Ba(Zr,Ce,Y,Yb)O3-δ electrolyte, International Journal of Hydrogen Energy, 44 (2019) 13768-13776 doi.org/10.1016/j.ijhydene.2019.03.181
- Hanping Ding, Wei Wu, Dong Ding et al. "Self-Sustainable Protonic Ceramic Electrochemical Cells Using A Triple-Phase Conducting Electrode for Hydrogen and Power Production". Nature Communications. Accepted manuscript.
- Hanping Ding, Wu Wu, Dong Ding. "Advancement of Proton-Conducting Solid Oxide Fuel Cells and Solid Oxide Electrolysis Cells at Idaho National Laboratory (INL)". ECS Transactions. 91 (2019) 1029-1034.

IPs:

- He Ting, Dong Ding, Wei Wu. Methods and systems for hydrogen gas production through water electrolysis, and related electrolysis cells. US Patent Application (16/483,631), 2019.
- Dong Ding, Hanping Ding, Wei Wu and Chaojiang. Electrochemical cells for hydrogen gas production and electricity generation, and related structures, apparatuses, systems, and methods. PCT Application (PCT/US19/58287), 2019
- Dong Ding, Hanping Ding, Wei Wu and Chaojiang. Reversible Solid oxide Cell Operated with A High-Performing and Durable Anode Material for hydrogen and power generation at intermediate temperatures. US Patent Application (16/560, 719), 2019.

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Fuel Cells Technology Office (FCTO) Award Number DE-EE0008080, Technology Manager: Dr. David Peterson and Dr. William Gibbons.

Organization	Team Members
Raytheon Technologies Research Cetner	Tianli Zhu, Paul Sheedy, Justin Hawkes, Sean Emerson, Bill Werkheiser (PW), Brian Hazel (PW)
ElectroChem Ventures	John Yamanis
LBNL	Mike Tucker, Grace Y. Lau
INL	Dong Ding, Hanping Ding
NREL	Zhiwen Ma, Jacob Wrubel

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof

HydroGEN: Advanced Water Splitting Materials

