

High-Performance Ultralow-Cost Non-Precious Metal Catalyst System for AEM Electrolyzer

P. I. Hoon T. Chung Los Alamos National Laboratory

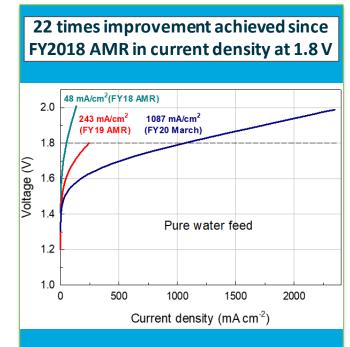
Project ID p158

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Lawrence Livermore National Laboratory

Project Partners

Hoon T. Chung, Los Alamos National Laboratory Barr Zulevi, Pajarito Powder, LLC


Project Vision

The key challenge in anion exchange membrane (AEM) electrolyzer is to achieve high performance without feeding any salt or alkaline solutions to the electrodes. In this project, we are developing PGM-free OER catalyst with high performance in the alkaline solution-free AEM water electrolyzer.

Project Impact

By eliminating most expensive PEM electrolyzer components, AEM technology offers > 75% stack cost reduction. This opens a pathway to meeting the DOE H₂ production cost target of < 2/kg.

Award#	2.2.0.402
Year 3 Start Date	10/01/2019
Year 3 End Date	09/30/2020
Year 3 DOE Share*	\$250 K
Year 3 Cost Share	\$ 28 K
Year 3Total Funding	\$278 K

Los Alamos

* this amount does not cover support for HydroGEN resources leveraged by the project (which is provided separately by DOE)

Project Motivation

Since early 2000s, LANL has contributed significantly in the design and performance of PGM-free cathode catalysts for PEFCs. Pajarito Powder, LLC (PPC) is a venturebacked US manufacturer of electrochemical materials including catalysts. Leveraging expertise of both institutions, this project has been initiated.

Key Impact Metric State of the Art Proposed **AEM** water 2.7 A/cm² 2.8 A/cm^2 electrolyzer at 1.8 V at 1.8 V performance AEM water Degradation rate of Degradation rate of $1.7 \text{ mV/hr for} \sim$ electrolyzer 0.1 mV/hr for ~ 500 200 hours at a durability hours at a current current density of density of 400 200 mA/cm² with mA/cm² with

NiFe PGM-free

catalyst

Barriers

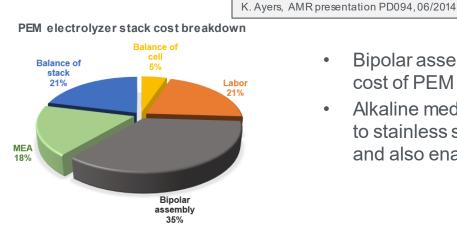
Cost:

 Expensive materials: platinized titanium flow filed; Nafion® membrane; PGM-catalysts for PEM electrolyzers

 ✓ Efficiency: High overpotential for HER and OER catalysts

Partnerships

PPC is a partner of this project. Their expertise is in (i) mass-production of catalysts, (ii) fabrication of MEAs, and (iii) AEM electrolyzer test. Catalyst developed by LANL will be tested by PPC in AEM electrolyzer and be produced scaled-up of 25 g/batch.

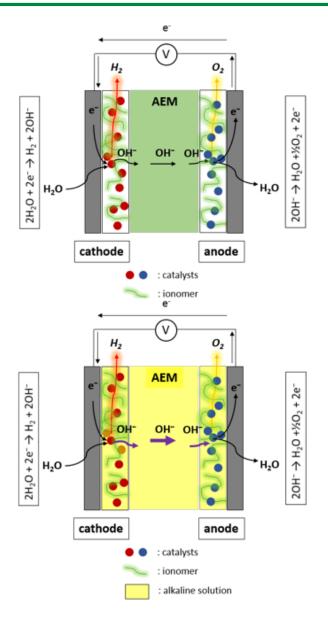

perovskite PGM-

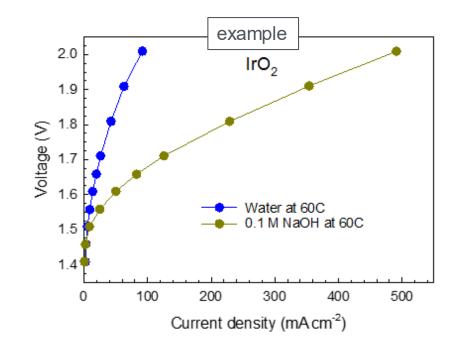
free catalyst

Relevance & Impact: H₂ Production for <\$2/kg

• AEM electrolysis vs. PEM electrolysis: significant cost reduction:

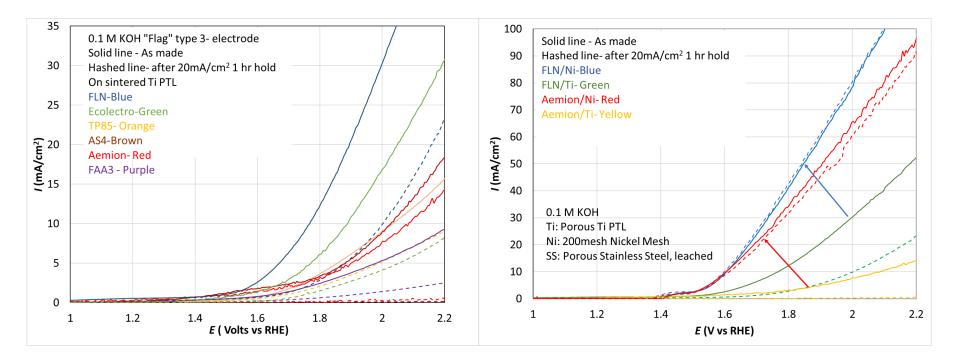
- $\checkmark \ \mathsf{PGM} \ \mathsf{catalysts} \to \mathsf{PGM}\text{-}\mathsf{free} \ \mathsf{catalysts}$
- \checkmark Titanium bipolar assembly \rightarrow stainless steel bipolar assembly
- ✓ Nafion[®] perfluorinated membrane → hydrocarbon membrane




- Bipolar assembly and MEA represents highest cost of PEM stack
- Alkaline media enables transition from titanium to stainless steel: eliminates 75% of part cost and also enables lower cost catalysts
- AEM electrolysis vs. Alkaline electrolysis: compact size; less corrosive environment:
 - \checkmark Corrosive alkaline solution \rightarrow water
 - \checkmark Low gas purity \rightarrow high gas purity
 - \checkmark Low current generation \rightarrow high current density

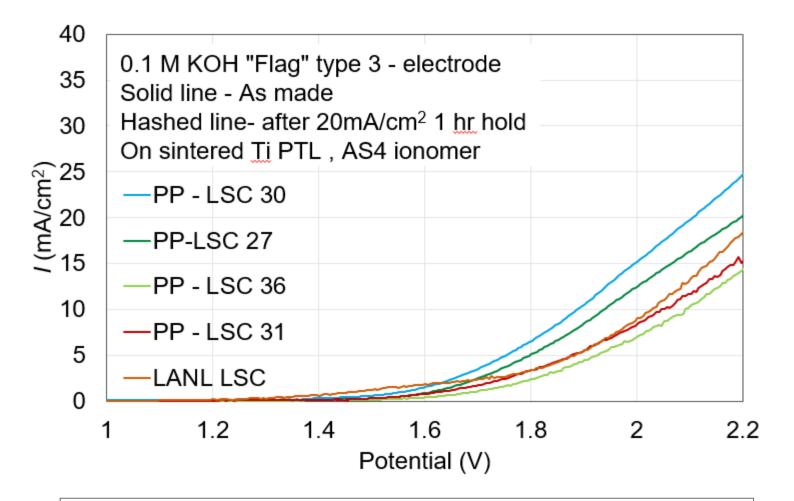
AEM water electrolysis has combined advantages of both PEM and alkaline electrolysis: the best system to meet the H_2 production cost target of < 2 \$/Kg of H_2

Relevance: Development of Pure Water-feed AEM Electrolyzer

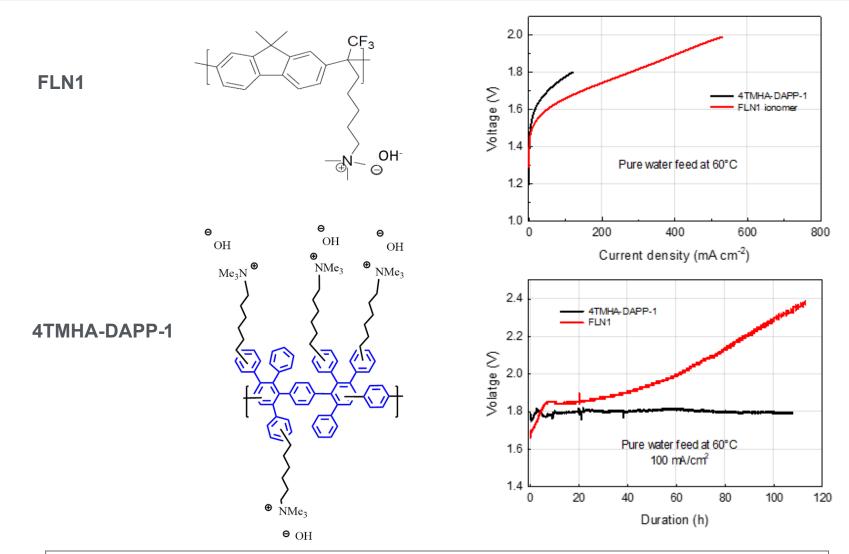


Alkaline solution-feed leads to higher AEM electrolyzer performance compared to water-feed AEM electrolyzer \rightarrow Development of high performance water-feed AEM electrolyzer is challenging.

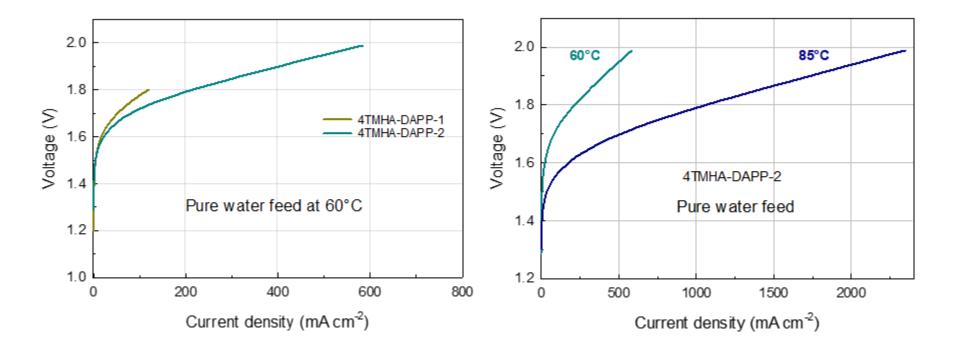
Date	Quarterly Progress Measures	Status
December 2019 (Fy20 Q1)	Optimize test conditions for catalyst/ionomer interactions using ambient pressure x-ray photoelectron spectroscopy (XPS)	Completed (see slide **)
March 2020 (Fy20 Q2)	Synthesize perovskite OER catalyst that has particle size < 10 nm using a supercritical drying method, and demonstrate 500 mA/cm ² at 1.8 V in a pure water-feeding (e.g., no added salt or base) AEM electrolyzer. The durability target is 0.5 mV/hr.	Performance and durability targets met and exceeded (see slides 10, 11)
June 2020 (Fy20 Q3)	PPC delivers 25 gr batch of scaled up catalyst that is developed by LANL with higher than 25 m ² /gr BET surface area and activity great than 90% of small batch scale catalysts.	On track
September 2020 (Fy20 Q4)Demonstrate 1 A/cm² at 1.8 V in a pure water-feeding (e.g., no added salt or base) AEM water electrolysis with PGM-free, carbon-free OER catalyst. The durability target is 0.1 mV/hr based on testing for 500 hour at a current density of ≥400 mA/cm².		On track



- 3 Electrode "Flag" type electrode testing of catalyst/lonomer/PTL interactions
- Ionomer significantly impacts OER performance
- Ni-mesh porous transport layer (PTL) exhibits much higher OER performance than expensive titanium(Ti) PTL → Ni PTLs to be employed in AEM electrolyzer

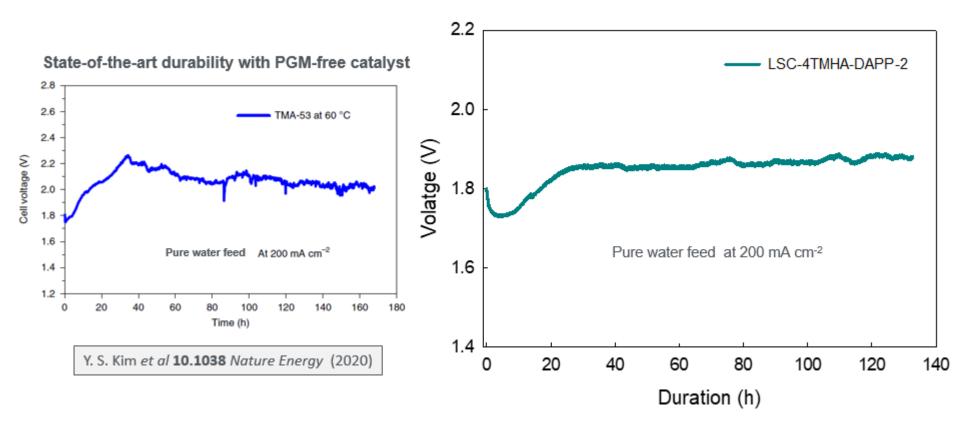

Accomplishments: Catalyst Scale Up

- Catalyst technology is transferred to Pajarito Powder from LANL and scale
 upsynthesis preliminary results are demonstrated
- OER performance of LSC catalysts synthesized by Pajarito Powder match or exceed LANL LSC catalyst performance

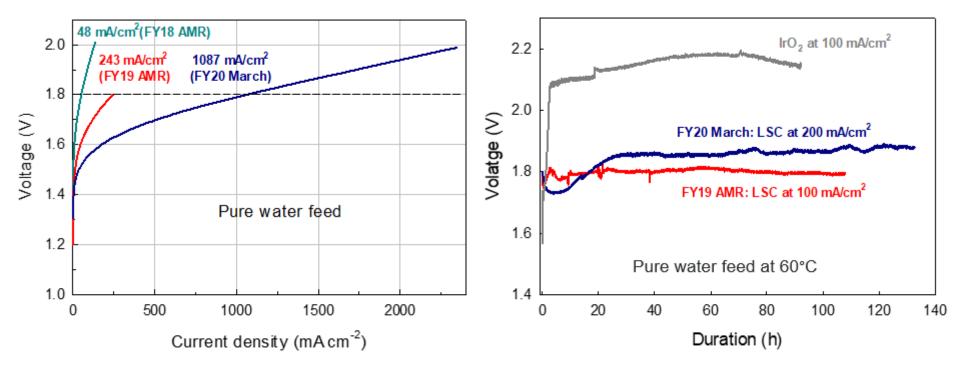

Accomplishment: Catalyst-Ionomer Interaction Effect

• FLN1 demonstrates higher initial performance but lower durability than 4TMHA-DAPP-1 → indicating understanding the catalyst-ionomer interaction critical particularly for durability

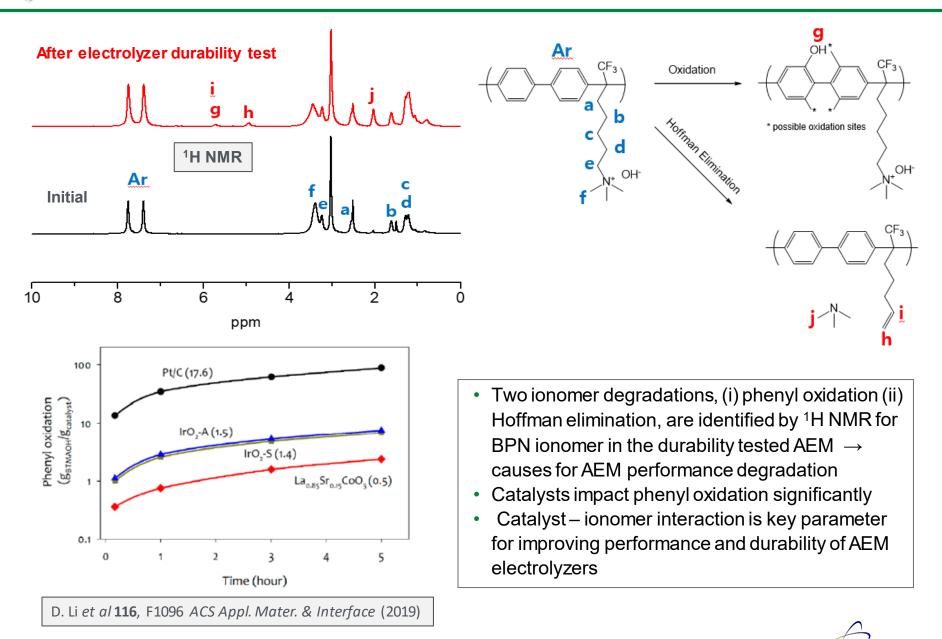
Los Alamos


Accomplishment: AEM Electrolyzer Performance

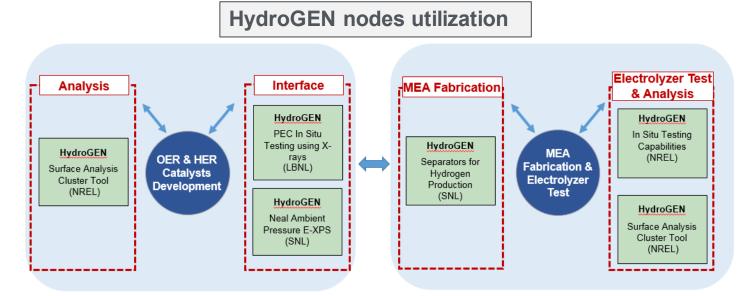
- Higher IEC ionomer (4TMHA-DAPP-2) enhances AEM electrolyzer performance than lower IEC ionomer (4TMHA-DAPP-1)
- Temperature has a huge impact on AEM electrolyzer performance
- Current density of 1.04 A/cm² is achieved at 1.8 V at 85°C


Accomplishment: AEM Electrolyzer Durability

- ~0.2 mV/hr degradation rate is demonstrated at 200 mA/cm² after initial pre-conditioning for 100 hour durability test with LSC-4TMHA-DAPP-2 catalyst-ionomer
- LSC-4TMHA-DAPP-2 catalyst-ionomer demonstrates higher performance and durability than state-of-the-art NiFe-TMA-53 catalyst-ionomer


Accomplishment: Progress since FY19 AMR

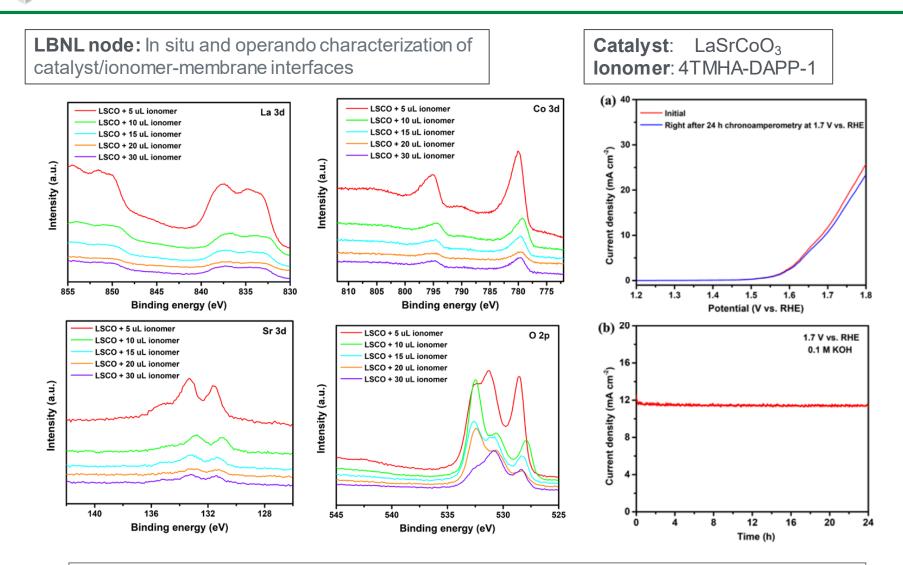
• Noticeable progress in AEM performance and durability have been achieved since FY19 AMR



Accomplishment: Catalyst-Ionomer Interaction

Los Alamos

Collaboration: Effectiveness


Node	PI	Task
Separator for Hydrogen Production	Cy Fujimoto (SNL)	Anion exchange membranes and ionomer synthesis
In situ Testing Capabilities for Hydrogen Generation	Guido Bender (NREL)	AEM water electrolysis test
Surface Analysis Cluster Tool	Craig Perkins (NREL)	Composition analyses for fresh and tested AEM electrolyzer electrodes with XPS/UPS
PEC In Situ and Operando Testing Using X-rays	Walter Drisdell (LBNL)	In situ and operando characterization of catalyst/ionomer-membrane interfaces
Near Ambient Pressure Electrochemical X-Ray Photoelectron Spectroscopy	Anthony McDaniel (SNL)	Catalyst/ionomer interaction phenomena study in conjunction with electrochemical characterization

Collaboration: Near Ambient Pressure Electrochemical XPS

La(III) La(III) perovskite, La 3d **SNL node:** Catalyst/ionomer interaction phenomena study Carbonate hydroxide in conjunction with electrochemical characterization TMHA AS4 Catalyst: LaSrCoO₃ 110_× Ionomers: AS4; U-Dell; TMHA; FAA3 105 100-CPS 95. 90 80-860 850 845 840 835 830 865 855 Binding Energy (eV) Srt Mixed Co(II) reduced, Sr Sr 3d reduced, Co(III) vacancies Sr lattice Co_{2p} oxides vacancies perovskite TMHA Co(II x 10 **U-DEL** 185-76-74_ 175-AS4 170-72 CPS 165-CPS 160-68. 155 TMHA 66 150-145 62. 805 800 795 790 785 780 775 Binding Energy (eV) 144 140 136 Binding Energy (eV) 132 128

 Ionomers impact metal element XPS → AP- electrochemical XPS experiments to correlate the XPS results to electrochemical activities are going to be tested

Collaboration: In Situ and Operando XAS Study

• Catalyst/ionomer ratio optimization has been finished → In situ operando XAS experiments to correlate the XPS results to electrochemical activities are going to be measured

Los Alamos

Collaboration: In Situ and Operando XAS Study

NREL node: AEM water electrolysis test

Anode: LSC 6 mg/cm² Cathode: PtRu/C; 1.0 mg_{Pt}/cm² Ionomer: 4TMHA-DAPP-1

- Lower performance and durability are measured in NREL than in LANL \rightarrow Gap study is in progress

Fundamental study

- ✓ Understanding obtained from the AP XPS and in situ XAS will be utilized in catalyst optimization
- ✓ Gap study in AEM electrolyzer performance and durability between LANL and NERL will be done

Catalyst development

- ✓ Supercritical method will be employed to reduce particle size of LSC
- ✓ PPC will deliver 25 gr batch of catalyst that is developed by LANL with higher than 25 m²/gr BET surface area and activity great than 90% of small batch scale catalysts

• AEM electrolyzer test

- ✓ Ni-mesh porous transport layer (PTL) exhibits much higher OER performance than expensive titanium(Ti) PTL → Ni PTL is going to be employed in AEM electrolyzer
- ✓ Achieved the durability target of 0.1 mV/hr based on testing for 500 hour at a current density of ≥400 mA/cm²

AEM water electrolyzer

- Demonstrated significantly improved AEM water electrolyzer performance since FY19 AMR from 243 mA/cm² to 1087 mA/cm² at 1.8 V
- ✓ Excellent durability, ~ 0.2 mV/hr at 200mA/cm², achieved at 60°C for 100 hours waterfeed test
- Ni mesh PTL demonstrates promising GDE electrochemical cell performance and durability

Catalyst-lonomer Interaction

- ✓ FLN1 demonstrates higher initial performance but lower durability than 4TMHA-DAPP-1
 → Understanding the catalyst-ionomer interaction is critical particularly for durability
- ✓ Catalyst/ionomer ratio optimization for in situ operando XAS has been finished → In situ operando XAS experiments to correlate the XPS results to electrochemical activities are going to be tested
- ✓ Ionomers change metal element XPS \rightarrow AP- electrochemical XPS experiments to correlate the XPS results to electrochemical activities are going to be measured

Publication

 Dongguo Li, Eun Joo Park, Wenlei Zhu, Qiurong Shi, Yang Zhou, Hangyu Tian, Yuehe Lin*, Alesey Serov, Barr Zulevi, Ehren Donel Baca, Cy Fujjmotr, Hoon T. Chung, Yu Seung Kim*, "Highly quaternized polystyreneionomers for high performance anion exchange membrane water electrolysers" *Nature Energy*, 2020, http://doi.org/10.1038/s41560-020-0577-x

* corresponding authors

Presentations

- Hoon T. Chung, "High Performance Ultralow-cost Non-Precious metal catalyst system for AEM Electrolyzer," Poster presentation at the DOE Hydrogen and Fuel Cell Program Annual Merit Review, Washington, D.C., April 2019
- Hoon T. Chung et al., "Highly Active and Durable Perovskite OER Catalyst for Pure Water Anion Exchange Membrane Electrolysis " 236th ECS Meeting, Atlanta, GA October 2019

