

Perovskite/Perovskite Tandem Photoelectrodes For Low-Cost Unassisted Photoelectrochemical Water Splitting

PI: Yanfa Yan Co-PI: Zhaoning Song

University of Toledo May 20, 2020

Project ID p191

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project Start Date: 10/01/2019*
 *Actual Start Date: 12/01/2019
- Project End Date: 09/30/2022

Budget

- Total Project Budget: \$0.942
 - Total Recipient Share: \$0.192
 - Total Federal Share: \$0.750
 - Total DOE Funds Spent*: \$

* As of 04/03/2020

Barriers

- Stability of perovskite against moisture and heat;
- Fabricate efficient n-i-p lowbandgap perovskite solar cells;
- Fabricate efficient n-i-p perovskite tandem solar cells

Partners

- N/A
- EMN Nodes
 - Kai Zhu, Joe Berry, NREL
 - Todd Deutsch, James Young, NREL
 - Jon Lee, Tony van Buuren, Tadashi
 Ogitsu, LLNL 2

Relevance

• <u>**Objective</u>**: Develop monolithically integrated perovskite/ perovskite tandem photoelectrodes to achieve low-cost, high-efficiency (solar to hydrogen efficiency of up to 20%), and long-term stable (>1,000 hours) wireless spontaneous water splitting systems.</u>

- <u>Impact:</u>
 - Developed stable low-bandgap Sn-Pb perovskites
 - Demonstrated transparent n-i-p wide-bandgap perovskite solar cells

- Develop stable and efficient low-bandgap perovskite bottom electrodes
- Develop stable and efficient wide-bandgap perovskite top electrodes
- Develop interconnecting layers to integrate two perovskite layers into tandem photoelectrodes
 - Combining ALD and sputtered metal oxides
- Prepare water-resistant perovskite absorber layers
 - Modify perovskite compositions & apply surface coating
- Develop a water impermeable oxide coating to prevent photo-corrosion and water ingress.

Milestones

FY 2019 to FY 2020

Task	Milestone Description (Go/No-Go Decision Criteria)	Original Planned Quarter	Revised Planned Quarter	Progress Notes
1. Bottom photoelectrodes	M1.1 Bottom photoelectrodes with photocurrent density >30 mA/cm ² .	1		Ongoing
	M1.2 Bottom photoelectrodes pass stability test at 85 °C for more than 100 hours	2		
2. Top photoelectrodes	M2.1 Top photoelectrodes synthesized at temperatures below 100 °C	1		Ongoing
	M2.2 Top photoelectrodes deliver a PCE > 18% with a J_{SC} > 20 mA/cm ² .	2		
3. Rigid tandem photoelectrodes	M3.1 Tandem photoelectrodes on rigid substrates deliver a $PCE > 20\%$.	3		
	M3.2 Tandem photoelectrodes retain>90% PCEs after MPPT in the air for more than 100 hours.	4		
Budget Period 1 Go/No Go Decision Point: Double-junction tandem solar cells deliver a PCE $> 20\%$; Double-junction tandem solar cells demonstrate stable operation in the air for more than 100 hours.		4		

Note: Program started in December, 2019

All-perovskite tandem solar cell benchmark

Science 364, 475 (2019)

 Can be used for spontaneous solar water splitting (three-electrode cell)

Accomplishments and Progress

Stable mixed Sn-Pb perovskites

- Synthesize stable low-bandgap Sn-Pb perovskites
- * FA = formamidinium; MA = methylammonium

Issues with n-i-p type Sn-Pb perovskite cells

Device structure: glass/ITO/SnO₂/PCBM/perovskite/PTAA/Au

Note: Average PCE for p-i-n type Sn-Pb cells is ~19%

- The performance of n-i-p type Sn-Pb perovskite solar cells is much worse than expected.
- Sn²⁺ oxidation and undesired charge selective contacts limit the device performance.

Efficient perovskite top cells

 Demonstrate efficient semitransparent n-i-p widebandgap perovskite solar cells

*with butylammonium bromide (BABr) surface treatment

• This project was not reviewed last year

Collaboration and Coordination

- The role of HydroGEN Consortium resources
 - Kai Zhu, Joseph Berry (NREL): Help develop efficient n-i-p low-bandgap perovskite solar cells; develop ALD deposition of moisture barriers.
 - Todd Deutsch, James Young (NREL): Provide measurement of efficiency and stability of perovskite photoelectrodes for water splitting.
 - Jonathan Lee, Tony van Buuren, Tadashi Ogitsu (LLNL)): Provide in-situ/operando X-ray characterization of electronic properties of perovskite electrodes.

Remaining Challenges & Barriers

- Demonstration of low-bandgap Sn-Pb perovskite solar cells in the n-i-p configuration is very challenging due to the ease of Sn²⁺ oxidation and unsuitable charge selective contacts.
- Demonstration of n-i-p type perovskite/perovskite tandem solar cells is challenging due to lack of success in n-i-p type Sn-Pb perovskite solar cells.
- Demonstration of perovskite-based photoelectrodes for water-splitting is challenging due to the instability of halide perovskites in aqueous electrolytes.
- A conformal and dense surface protection layer is needed to prevent water ingress into the active layers.

- Remainder of FY 2020
 - Continue the fabrication of 1.25-eV mixed Sn-Pb n-i-p perovskite cells
 - Optimize transparent wide-bandgap (1.75 eV) n-i-p perovskite cells
 - Explore alternative 1.4-eV Pb-based n-i-p perovskite bottom cells
 - Explore alternative 2.3-eV CsPbBr₃ n-i-p perovskite top cells
 - Fabrication n-i-p type perovskite/perovskite tandem solar cells
- FY 2021
 - Develop water-resistive coating for perovskite solar cells
 - Develop three-electrode unassisted water splitting cells using conventional p-i-n perovskite/perovskite tandem photoelectrodes.

 This project has just started and technology transfer activities will be considered as the program proceeds.

Summary

Objective:Develop monolithically integrated perovskite/ perovskitetandem photoelectrodes for wireless spontaneouswater splitting systems.

Approach:Develop efficient and stable top and bottom perovskite
photoelectrodes; develop n-i-p perovskite/perovskite
tandem solar cells; develop surface protection layers.

Accomplishments: Synthesized stable low-bandgap Sn-Pb perovskite solar cells; demonstrated transparent wide-bandgap n-i-p perovskite top subcells.

Collaboration: Strong collaboration with EMN node experts at NREL and LLNL.