

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Technology Acceleration Overview

Jesse Adams, HFTO - Technology Acceleration Program Manager

2021 Annual Merit Review and Peer Evaluation Meeting

June 7, 2021

Technology Acceleration Subprogram Overview

Evolution of Technology Acceleration Subprogram & Priorities

Technology Validation

Market Transformation

Manufacturing R&D

Safety, Codes & Standards R&D

Systems Analysis

Current Focus Areas

Energy

 Chemical and industrial processes integrating H₂ technologies focusing on decarbonization

Transport &

Fueling

Transportation and H₂ fueling demonstrations

Enabling activities •

including manufacturing, safety codes & standards, and workforce development

Demonstrations of H₂ and fuel cell end uses that accelerate technology and reduce GHG emissions to enable H2@Scale vision

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE

Hydrogen Safety: An Overarching Priority

Enabling the safe deployment of hydrogen and fuel cell technologies

Codes & Standards

- Goal: Support and facilitate development of essential codes and standards to enable widespread deployment of hydrogen and fuel cell technologies and completion of essential regulations, codes and standards
- Approach: Conduct RD&D to provide scientific basis needed to define requirements in developing codes and standards

Safety

- Goal: Support best safety practices for hydrogen and fuel cell deployments and ensure their use in DOE-funded projects
- Approach: Develop and enable widespread sharing of safetyrelated information resources and lessons learned with key stakeholders

Technology Acceleration Funding

FY21 budget supports focus on demonstration of novel H₂ end uses to enable H2@Scale vision

Demonstration of H2@Scale: Different Regions, Hydrogen Sources & End Uses

Frontier Energy – H2@Scale Demo in TX (TA037)

<u>Goals:</u>

- Minimize H₂ cost through multiple generation sources
- Co-locate H₂ end uses (stationary power & vehicle fueling)
- 5-year Plan for Port of Houston focused on H₂

Key Accomplishments:

- Site plans completed and undergoing final engineering
- Collected 1 year of load data from U. Texas Advanced Computing Center - modeled with H₂ and FC power
- Preliminary Port of Houston model with supply & demand hubs

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

Plug Power - Integrated H₂ Production & Consumption for Improved Utility Function in FL (TA030)

Goals:

- Develop gridintegrated H₂ assets to allow renewable penetration
- Develop H₂ end uses (stationary & vehicle fueling)

Key Accomplishments:

- Sizing of the storage system to meet H₂ delivery demands, including vehicular and stationary FC applications
- Site design, dynamic power simulations, & TEA underway

Integration of Baseload Nuclear Energy with H₂ Production

Exelon – Demo of Electrolyzer Operation at a Nuclear Plant (TA028)

Key Accomplishments:

- Nine Mile Point (NY) selected as site
- Initial engineering design underway
- Completed acceptance testing of Nel electrolyzer over 500 hours & degradation <0.1% (NREL)

OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

• Conducted initial market demand for various sites (ANL)

<u>Goals:</u>

- Install 1.2MW PEM electrolyzer at a nuclear power plant
- Provide low-cost supply of in-house H₂ used for cooling
- Simulate scaled-up operation of a larger electrolyzer in nuclear power markets

Key Accomplishments: New project just underway

FuelCell Energy – Solid Oxide Electrolysis System Demonstration (poster-TA039)

Goals: • Integrate high temperature 250kW solid oxide electrolyzer (SOEC) with nuclear plant emulator

- Validate high efficiency & low-cost H₂ production from SOEC using electricity & waste heat from nuclear plant
- Increase operating flexibility & profitability by switching between power & H₂ generation

High Temperature Electrolyzer Development and Testing

INL - High Temperature Electrolysis Test Stand (TA018)

50kW test stand integrated w/nuclear power plant emulator

Key Accomplishments:

- Validating commercial stack performance from Bloom, Nexceris, OxEon, FuelCell Energy, Haldor Topsoe (2 tested, 3 lined up)
- >4,000 hours testing on 25 kW stack; <0.5% degradation/1,000 hrs
- Great integration across EERE (H2NEW, HydroGEN), Fossil & Nuclear Energy Offices

Goals:

- Accelerate U.S. Solid Oxide Electrolyzer Competitiveness
- Independently validate stack performance
- Provide nuclear simulated integration/testing

PNNL - Electrolyzer Stack Development & Manufacturing (TA043)

<u>Goal:</u>

Work w/ industry to solve cost & degradation issues through MEA development, modeling, post-mortem analysis, AST development & manufacturing

Key Accomplishments:

- Developed process to produce 300 cm² SOEC cells
- Established stack repeat unit fabrication process
- Applied protective coating to metal interconnects to prevent corrosion and CR poisoning

Enabling & Demonstrating Integrated Hydrogen Energy Systems

NREL – Advanced Research on Integrated Energy Systems (ARIES) (TA048)

- Overall site layout & safety reviews complete
- Most key pieces of equipment have been ordered
- Systems integration (controllable grid interface, thermal, water, gas, electrical) underway

Goals:

 Integrate 1.25MW PEM electrolyzer, 600 kg H₂ storage & 1MW fuel cell

• Provide platform for RD&D in grid integration, energy storage, NG blending & scaling H₂ systems

Caterpillar – Demonstration of H₂ **Fuel Cell** at a Data Center (poster - TA044)

Microsoft **BALLARD**

Goals:

- Install 1.5MW stationary fuel cell at a Microsoft data center in Washington state
- 48 hours of LH₂ onsite
- Increase confidence and comfort in H₂ & fuel cells for IT industry (document requirements and identify gaps)

Key Accomplishments: New project just underway

Technology Acceleration: Transportation

Technology Acceleration: Transportation (Medium / Heavy-Duty)

Focused on M/HD Trucks with Demanding Drive Cycles & Range Requirements

CTE – Fuel Cell Hybrid Electric Delivery Van (TA01)

Goal:

Demonstrate hybrid electric delivery vans with fuel cell range extenders (75 to >125 mile range)

Key Accomplishments:

- 5 trucks built and undergoing testing
- 10 more trucks in assembly to be completed by summer 2021
- Trucks to operate in disadvantaged community in CA

NREL – Fuel Cell Electric Bus Evaluations (TA013)

Goal:

Validate fuel cell electric bus performance & cost using real-world data

Key Accomplishments:

- Tracked 38 buses; 12 surpassed 25,000 hours & 1 over 32,000 hours
- ~9 mpdge (~2x greater than CNG or diesel); ~300 mile range (37.5 kg H₂)
- Status report: <u>https://www.nrel.gov/docs/fy21osti/75583.pdf</u>

SuperTruck III Funding Opportunity Announcement

• Develop & demonstrate medium/heavy-duty electric trucks including H₂ fuel cells

• Up to \$100M over 4 years; Released on April 15th (funded jointly by HFTO and VTO)

Technology Acceleration: Transportation (Maritime)

H₂ Can Reduce GHGs & Still Meet Maritime Performance Requirements

Hornblower – Marine Hydrogen Demonstration (poster - TA045)

First of its kind maritime H_2 refueling infrastructure on water (530 kg H_2 /day) - onboard a barge at the San Francisco Waterfront

ANL - Total Cost of Ownership Analysis for Ferries (TA034)

- Fuel cost dominates TCO
- H₂ fuel cell ferries likely to be cost competitive at fuel cell cost of \$60/kW & LH₂ bunkered cost of \$4.00/kgH₂ (Ultimate)
- Reducing onboard storage can yield lower TCO than diesel

Goal:

Technology Acceleration: Transportation (Rail)

H₂ and Fuel Cells Offer Big Potential for Rail Applications

ANL - Total Cost of Ownership Analysis for Passenger Rail (TA034)

Key Results:

 H_2 Electric Multiple Unit (HEMU) locomotives likely to be cost competitive at fuel cell cost of \$60/kW & LH₂ cost of \$3.50/kg (Ultimate)

CEC - H₂ Switcher Locomotive

Technical advisor for CEC's FC-powered switcher locomotive demo project

Technology Acceleration: Transportation (Fueling)

Fueling Infrastructure Critical for Heavy-Duty Applications

Electricore - High Pressure / Flow Rate Dispenser & Nozzle for HD Vehicles (TA049)

Goals:

- Develop dispenser & nozzle (receptacle, hose, breakaway) for HD vehicles
- 100 kg in 10 mins at 70 MPa
- Demonstrate system at NREL

Key Accomplishments:

- Completed industry survey (27 organizations) to determine specifications
- Initial design work completed including component selection, CFD and FMEA analysis
- Partnered with WEH & Bennett

Electricore – Advanced H₂ Mobile Fueler (TA017)

<u>Goal:</u>

Develop a mobile fueler capable of fueling 20-40 vehicles / day (70MPa, T40, 3-5 min fill, 200 kg H₂)

Key Accomplishments:

Design, assembly, and initial testing complete; available soon for public fueling in Ontario, CA

Technology Acceleration: Transportation (New Uses)

HFTO Continues to Pursue New End Use Applications for H₂

H₂ HD Off-Road Equipment Workshop

- Heavy-Duty Fuel Cell Truck Workshop, July 2018
 <u>https://www.energy.gov/eere/fuelcells/fuel-cell-truck-powertrain-rd-activities-and-target-review-workshop-h2-scale-end-use</u>
- H2@Rail Workshop, March 2019
 https://www.energy.gov/eere/fuelcells/h2ports-workshop
- H2@Ports Workshop, September 2019
 https://www.energy.gov/eere/fuelcells/h2ports-workshop
- H2@Airports Workshop, November 2020
 https://www.energy.gov/eere/fuelcells/h2airports-workshop

Technology Acceleration: Industrial & Chemical Processes

Technology Acceleration: Industrial & Chemical Processes (Steel)

Decarbonizing Iron/Steel Production with Hydrogen (HySteel) – new projects

Missouri U. of S&T - Grid Interactive Steelmaking with H_2 (GISH) (poster TA053)

Goals:

- 1 ton/week iron production using variable H₂/NG content; scaled to 5,000 ton/day
- Demonstrate grid integrated steel production system combining:
 - H₂-Direct-Reduction furnace for ironmaking
 - Electric melting for steelmaking

Goals:

- 1 ton/week equivalent H₂-Direct-Reduction pilot system, scale-up design for a 2Mton/year DRI product capacity
- Demonstrate a thermally & chemically integrated Solid Oxide Electrolyzer system with a DRI plant

U.S. DEPARTMENT OF ENERGY

Technology Acceleration: Enabling Activities

Technology Acceleration: Enabling Activities (Manufacturing)

Manufacturing is Key to Reduce Costs and Improve Durability at Large Volumes

NREL - MEA Manufacturing R&D (TA001)

Understand

Industry Challenges

International

Collaborators

Goals:

- Develop quality inspection and defect threshold methods and understandings
- Focused on HD Fuel Cell and Low Temperature Electrolyzer (LTE) applications

Key Accomplishments:

- Validated membrane thickness imaging including impact of web speed
- Developed technique for reinforced & thick LTE membranes

Accelerate MEA and

Stack Scale-up

3

Industry Partners

 Developed thermal scanning for membrane thickness

Develop and

Demonstrate New

Methods and Tools

National Lab and

University Partners

International Meeting on Membrane Electrode Assembly Quality Control for Electrolysis and Fuel Cells (May 2021)

Goals:

- Review Prior Workshop Outcomes
- Add LTE MEA materials and compare to FC QC needs
- Prioritize QC needs for both FC and LTEs

Key Outcomes:

Preliminary findings show:

- FC industry expressed need to better understand features (material variations) vs. actual defects
- Electrolyzer industry expressed need to review failure modes to inform QC needs

Collaboration between U.S. (NREL -TA001), National Research Council-Canada and Frauhnhofer ISE in Germany

Technology Acceleration: Enabling Activities (Safety, Codes & Standards)

U.S. Federal Regulatory Map

Import Terminal FERC | PHMSA | USCG **BSEE** – Bureau of Safety and Environmental Enforcement **EPA** – Environmental Protection Agency **FAA** – Federal Aviation Administration **FERC** – Federal Energy Regulatory Commission FHWA – Federal Highway Administration **FTA** – Federal Transportation Administration FTC – Federal Trade Commission **FRA** – Federal Railroad Administration **OSHA** – Occupational Safety and Health Administration **PHMSA** – Pipeline & Hazardous Materials Safety Administration USCG – US Coast Guard NHTSA – National Highway Traffic Safety Administration FE – Office of Fossil Energy **EERE** – Office of Energy Efficiency and Renewable Energy FMCSA – Federal Motor Carrier Safety Administration

Major Gaps Identified

- FERC for pipeline transmission, electricity production, and heating
- FHWA for bridges and tunnels
- FRA, USCG, and FAA for rail, maritime, and aviation use

Full report available soon at <u>https://energy.sandia.gov/wp-</u> <u>content/uploads/2021/03/H2-</u> <u>Regulatory-Map-Report SAND2021-</u> <u>2955.pdf</u>

Technology Acceleration: Enabling Activities (Safety, Codes & Standards)

SCS - Enabling Codes & Standards

SNL - Materials Compatibility (SCS 005)

Goal:

Provide scientific basis for codes & standards surrounding materials compatibility

Key Accomplishments:

- ASME Code Case
 2938 enabled up to
 3X longer life for
 Type I & II tanks
- Demonstrated Modal Acoustic Emission & Eddy Current techniques for vessel inspection in effort to define cycle parameters

SNL - Hydrogen Behavior R&D (SCS 010)

Goal:

Identify ways to reduce siting burdens for LH₂ deployment through R&D to enable a 40% reduction in station footprint

Key Accomplishments:

- Developed proposed science-based LH₂ exposure distances tables for NFPA 2
- Field validation of cryogenic H₂ behavior:
 - Confirmed H₂ is concurrent with visible plume
 - Demonstrated minimal effect of humidity on H₂ plume

Technology Acceleration – Examples of International Collaboration

Protocol for heavy-duty Hydrogen refuelling

Lab-Level engagement with FCH-JU projects:

- **PRESLHY** liquid hydrogen R&D
- PRHYDE protocol for heavy duty refueling

International Partnership for Hydrogen and Fuel Cells in the Economy

- Co-Chair of IPHE RCSSWG and E&O WG
- Coordinating efforts to identify regulatory gaps and prioritize efforts

CENTER FOR Hydrogen SAFETY

Connecting a Global Community

- •Strategic partnership with the Center for H₂ Safety
- •Over 60 members & growing!

Shipping

- Shipping (maritime) collaboration
 w/ Denmark, Norway and others
- Focused on the entire value chain: ship, fuel production and port infrastructure
- Plan to engage in RD&D activities to develop, test, and accelerate the commercial readiness

Technology Acceleration Program: Collaboration Network

Fostering technical excellence, economic growth and environmental justice

Technology Acceleration Program: Highlights and Milestones

FY2019	FY2020	FY2021	FY2022
Released DOE H ₂ and Fuel Cell Targets for Long-Haul Class 8 Trucks	Kicked Off H ₂ Working Group as part of the 21st Century Truck Partnership	Awarded World's first Large Scale Fuel Cell Powered Data Center (Caterpillar)	Focus on Integrated Offshore Wind to H ₂ Demonstration
		Awarded World's First Renewable H ₂ Production Refueling Barge (Hornblower)	Focus on Decarbonizing Steel & Ammonia through use of Green H ₂
Launched the Center for Hydrogen Safety (AIChE & PNNI)	Kicked Off 2 Integrated Energy System Demonstration Projects Showcasing H2@Scale Concept (Plug Power & Frontier Energy)	Kicked off 2 HySteel projects to Demonstrate using H ₂ to Decarbonize Iron & Steel Production (UCI and MS&T)	Continue Collaborating with NE on H ₂ Production from Nuclear
		Establishing an Integrated MW-scale H ₂ Production,	Select SuperTruck III Projects for M/HD H ₂ Fuel Cell Trucks
H2@Ports Workshop in Collaboration with DOT MARAD	Kicked Off a First-of-a-Kind Dynamic H ₂ Production Demonstration at a Nuclear Plant (Exelon)	Storage and FC System at ARIES (NREL)	Continued Collaboration and Alignment of 21CTP & U.S. DRIVE
		Released SuperTruck III FOA	Test 250kW Integrated HT Electrolysis
H2@Rail Workshop in Collaboration with DOT-FRA	Setup National Validation Lab for Large High Temperature (HT) Electrolyzers (INL)	Initiated CRADA Project on High-Flow Fueling Protocol	System Using Fully Emulated Nuclear Integrated Test Stand
		Validated 2 High Temp Electrolyzers from Industry – including a 25kW stack that Surpassed 4,000 hrs with	Utilize ARIES Capabilities to Advance Integration of H ₂ Technologies in Future Energy Systems
Setback Distances for GH ₂ Storage Reduced 50% as a result of Codes & Standards efforts	Performed Release of Cryogenic H ₂ to support Reduced LH ₂ Storage Separation Distances in NFPA 2 (SNL)		
		Kicked off H2EDGE Workforce Development Project (EPRI)	Collaboration with International Mission Innovation – Shipping (Maritime)
Released HyRAM 2.0 (H ₂ Risk Assessment) (SNL)	Enabled ~3x Longer Life for Type I & II Storage Tanks through Testing to Enable ASME Code Case Revision (SNL)	Hosted International Workshop on Quality Control for Electrolysis & Fuel Cells w/ NRC (Canada) & Frauhnhofer ISE (Germany) (NREL)	Perform SCS Gap Assessment for Large Scale H ₂ Applications
			Utilize Bulk Cryogenic H ₂ Behavior Validation
	H2@Airports Workshop	Released Federal Regulatory Map Report (SNL)	Data to Enable Reduction of Separation Distances in NFPA 2
U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	HYDROGEN AND FUEL CELL TECHNOLOGIES OF	-ICE 25

2021 H2@Scale CRADA Call – Supporting ARIES (Released Today!)

- Topic 1: H2@ARIES Integrated Hydrogen Energy System Testing/Validation
- Topic 2: Applied Risk Assessment and Modeling for H2@Scale Applications
- Topic 3: Next-Generation Sensor Technologies (wide-area H₂ sensors)

https://www.nrel.gov/hydrogen/h2-at-scale-crada-call.html

- Total funding up to \$12M over 3 years*
- \$500k \$2M per project (dependent on topic area)
- Up to 14 projects total
- 30% Cost share including 10% cash in
- National Lab leads w/ partners from industry, state & local gov, universities, etc.

Proposals due July 19, 2021

*Pending Appropriations

Planned hydrogen system capabilities at NREL's Flatirons Campus

Technology Acceleration Team – THANKS!

Jesse Adams Technology Acceleration Program Manager Jesse.Adams@ee.doe.gov

Technology Managers

U.S. DEPARTMENT OF ENERGY

HYDROGEN AND FUEL CELL TECHNOLOGIES OFFICE