II.E.5 Hydrogen from Water in a Novel Recombinant Oxygen-Tolerant Cyanobacteria System

Hamilton O. Smith (Primary Contact) and Qing Xu J. Craig Venter Institute 9704 Medical Center Drive Rockville, MD 20850 Phone: (240) 268-2650; Fax: (240) 268-4004 E-mail: hsmith@venterinstitute.org

DOE Technology Development Manager: Roxanne Garland Phone: (202) 586-7260; Fax: (202) 586-9811 E-mail: Roxanne.Garland@ee.doe.gov

DOE Project Officer: Carolyn Elam Phone: (303) 275-4953; Fax: (303) 275-4788 E-mail: Carolyn.Elam@go.doe.gov

Contract Number: DE-FC36-05GO15027

National Laboratory Collaborator: Pin-Ching Maness National Renewable Energy Laboratory (NREL) Golden, CO

Start Date: May 1, 2005 Projected End Date: April 30, 2008

Objective

• Develop an O₂-tolerant cyanobacterial system for sustained and continuous light-driven H₂ production from water.

Technical Barriers

This project addresses the following technical barrier from the Hydrogen Production section (3.1.4.2) of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan:

(Z) Continuity of Photoproduction

Technical Targets

Cyanobacteria's hydrogenases are highly O_2 sensitive. Thus, they cannot produce H_2 continuously. This project is performing genetic-engineering studies of cyanobacteria. The outcome of these studies will lead to a much more O_2 -tolerant cyanobacteria system, which may be used for continuous photo-hydrogen production. Therefore, this project will facilitate efficient H_2 production from renewable sources and will address the DOE 2010 target for photolytic hydrogen production from water.

Approach

Cyanobacteria have the ability to split water photolytically into O_2 and H_2 , but their hydrogenases are highly O_2 -sensitive. In contrast, a few anoxygenic photosynthetic bacteria have O_2 -tolerant H_2 -evolving hydrogenases, but they can not use water as the electron donor. We are using the following two approaches to address this problem.

- Transfer to and express known O₂-tolerant hydrogenases from anoxygenic photosynthetic bacteria in cyanobacteria (Venter Institute and NREL):
 - Determine if the O₂-tolerant hydrogenase can link to the host electronic carrier, ferredoxin
 - Further characterize the O₂-tolerance property of these hydrogenases
 - Transfer and express a known O₂-tolerant hydrogenase from *Thiocapsa roseopersicina* in cyanobacteria (*Synechocystis* and *Synechococcus*)
 - Transfer and express a known O₂-tolerant hydrogenase from *Rubrivivax gelatinosus* in cyanobacteria
- Identify novel O₂-tolerant hydrogenases from Venter Institute's global ocean sampling project, and transfer them into cyanobacteria (Venter Institute):
 - Sample ocean waters, and sequence environmental samples using cultureindependent shotgun sequencing approach
 - Construct environmental genomic databases
 - Build Hidden Markov Models (HMMs) and search putative hydrogenase sequences through the databases
 - Retrieve original DNA samples or library for cloning the genes of novel hydrogenases
 - Express the genes and screen for O₂-tolerant hydrogenase
 - Transfer the novel O₂-tolerant hydrogenase into cyanobacteria

FY 2006 Progress

This project did not receive funding in FY 2006. DOE plans to restart project funding in FY 2007.

Conclusions and Future Directions

• Heterologous expression of an active NiFehydrogenase likely will require the assistance of its native assembly and maturation proteins. We will begin to transfer the hydrogenase assembly genes along with its structural genes in FY 2007.

FY 2006 Publications/Presentations

- Maness presented U.S. biological H₂ research activities during the International Partnership of H₂ Economy Workshop in Seville, Spain (Oct. 24-26, 2005).
- Maness gave an oral presentation of cyanobacterial research during the 15th Western Photosynthesis Conference in Pacific Grove, CA (Jan. 5-8, 2006).
- Qing Xu, Gergely Maroti, Shibu Yooseph, Yingkai Tong, Hamilton O. Smith, and J. Craig Venter. *Identification and Analysis of NiFehydrogenases from the Sargasso Sea Microbes*. Poster presentation at Genomes, Medicine, and the Environment Conference, Hilton Head Island, SC (Oct. 16-18, 2006).