V.B.17 High Temperature Membrane With Humidification-Independent Cluster Structure

Ludwig Lipp (Primary Contact), Pinakin Patel, Ray Kopp FuelCell Energy, Inc. 3 Great Pasture Road Danbury, CT 06813 Phone: (203) 205-2492; Fax: (203) 825-6273 E-mail: llipp@fce.com

DOE Technology Development Manager: Amy Manheim Phone: (202) 586-1507; Fax: (202) 586-9811 E-mail: Amy.Manheim@ee.doe.gov

DOE Project Officer: Reg Tyler Phone: (303) 275-4929; Fax: (303) 275-4753 E-mail: Reginald.Tyler@go.doe.gov

Technical Advisor: Thomas Benjamin Phone: (630) 252-1632; Fax: (630) 252-4176 E-mail: benjamin@cmt.anl.gov

Contract Number: 36-06GO16033

Start Date: June 1, 2006 Projected End Date: May 31, 2011

Objectives

- Develop humidity-independent, thermally stable, low equivalent weight composite membranes with controlled ion-cluster morphology, to provide high proton-conductivity at 120°C (Overall Goal: Meet DOE 2010 targets)
- Improve mechanical properties to significantly increase durability and reduce gas cross-over
- Expand the operating range to sub-freezing temperatures

Technical Barriers

This project addresses the following technical barriers, as identified in the Fuel Cells section (3.4.4.2) of the Hydrogen, Fuel Cells and Infrastructure Technologies Program Multi-Year Research, Development and Demonstration Plan:

- (A) Durability
- (B) Cost
- (D) Thermal, Air and Water Management

Technical Targets

This project is developing a composite membrane to meet the following DOE 2010 technical targets for membranes:

- Membrane Conductivity: at 120°C: 0.1 S/cm; at room temperature: 0.07 S/cm; at -20°C: 0.01 S/cm
- Cell Area Specific Resistance: 0.02 Ωcm²

Approach

The approach used to conduct the research is described in Table 1.

TABLE 1.	Approach	for the	Composite	Membrane
----------	----------	---------	-----------	----------

Target Parameter	DOE Target (2010)	Approach	
Conductivity at:			
• 120°C	0.1 S/cm	Lower equivalent weight	
Room temp.	0.07 S/cm	Higher number of functional groups	
• -20°C	0.01 S/cm	Stabilized nano-additives	
Inlet water vapor partial pressure	1.5 kPa	Immobilized cluster structure	
Hydrogen and oxygen cross-over at 1 atm	2 mA/cm ²	Stronger membrane structure; functionalized additives	
Area specific resistance	$0.02 \ \Omega cm^2$	Improve bonding capability for MEA	
Cost	<40 \$/m²	Simplify polymer processing	
Durability: • with cycling at >80°C • with cycling at ≤80°C	>2,000 hours >5,000 hours	Thermo-mechanically compliant bonds, higher glass transition temperature	
Survivability	-40°C	Stabilized cluster structure design	

FY 2006 Publications/Presentations

1. L. Lipp, P. Patel, R. Kopp, "High Temperature Membrane With Humidification-Independent Cluster Structure", 2006 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting, Washington D.C., May 16-19, 2006.

2. L. Lipp, P. Patel, R. Kopp, "High Temperature Membrane With Humidification-Independent Cluster Structure", High Temperature Membrane Working Group Meeting, Arlington, VA, May 19, 2006.